Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erweiterung des genetischen Alphabets

11.06.2012
Nachwuchswissenschaftlerin der Universität Konstanz legt Kristallstrukturanalyse eines synthetischen Basenpaars vor

Die Konstanzer Wissenschaftlerin Karin Betz hat in einer internationalen Kooperation mit dem Scripps Research Institute in Kalifornien (USA) als Erstautorin ihre Forschungsergebnisse in der internationalen Fachzeitschrift „Nature Chemical Biology“ veröffentlicht.

Die 27-jährige Nachwuchswissenschaftlerin, die an der Graduiertenschule Chemische Biologie (KoRS-CB) der Universität Konstanz promoviert, stellt in ihrer Veröffentlichung mit Denis A. Mayshev aus den USA die Kristallstruktur einer DNA-Polymerase beim Einbau eines artifiziellen Basenpaares vor.

In dem Bestreben, das natürliche genetische Alphabet künstlich zu erweitern, wurden in den letzten Jahren von verschiedenen Arbeitsgruppen artifizielle Basenpaare mit unterschiedlicher Struktur und Paarungseigenschaften synthetisiert und auf ihren Einbau durch DNA-Polymerasen getestet. Ein vielversprechendes künstliches Basenpaar, das von Polymerasen erfolgreich in einen DNA-Strang eingebaut werden kann, wurde von einer Forschergruppe um Floyd E. Romesberg, PhD, am Scripps Research Institute in Kalifornien gefunden.

Dieses hydrophobe Basenpaar paart nicht wie ein natürliches Basenpaar über Wasserstoffbrücken, sondern hauptsächlich durch hydrophobe- und Stapelwechselwirkungen. In freier DNA zeigt das Basenpaar eine interkalierende, also übereinander liegende Struktur, von der ausgehend dessen Einbau in eine DNA-Polymerase schwer vorstellbar ist. In der nun veröffentlichten Strukturanalyse belegt die internationale Forschergruppe, dass die DNA-Polymerase selbst die Replikation des synthetischen Basenpaares unterstützt, indem sie das Basenpaar zwingt, genau gleich zu paaren wie das natürliche Basenpaar: in einer Watson-Crick-Geometrie.

Die Wissenschaftler konnten belegen, dass das Paar in freier DNA aufeinander liegt und erst im aktiven Zentrum der Polymerase planar angeordnet wird. Dafür wurde das von der Arbeitsgruppe Romesberg gefundene künstliche Basenpaar an der Universität Konstanz durch Karin Betz analysiert. Um herauszufinden, wie die Polymerase das Basenpaar einbaut, wurde der Protein-DNA-Komplex in Konstanz zunächst kristallisiert und der Kristall anschließend mit Röntgenstrahlen behandelt. Aus den dadurch entstehenden Beugungsbildern konnte die Kristallstruktur berechnet und somit die genaue 3D-Struktur des Proteins abgebildet werden.

Karin Betz ist Stipendiatin der Graduiertenschule Chemische Biologie, die an der Schnittstelle von Chemie und Biologie angesiedelt ist. Sie forscht in der Arbeitsgruppe von Prof. Dr. Andreas Marx an der Professur für Organische Chemie und Zelluläre Chemie in enger Zusammenarbeit mit den Arbeitsgruppen von Prof. Dr. Wolfram Welte und Prof. Dr. Kay Diederichs in den Bereichen Proteinkristallographie und Molekulare Bioinformatik. Betz hat nach einem Studium der „Life Science“ an der Universität Konstanz im Jahr 2010 die Arbeit an ihrer Promotion zur Struktur und Funktion der DNA-Polymerase begonnen.

Als institutionelles Zentrum des Forschungsschwerpunktes „Lebenswissenschaften“ an der Universität Konstanz hat sich die Graduiertenschule Chemische Biologie inzwischen national und international profiliert und ist zu einer gesuchten Adresse für den wissenschaftlichen Nachwuchs geworden. Mit der Gründung des „Center for Chemical Biology“ und der Bewilligung des Sonderforschungsbereichs 969 „Chemical and Biological Principles of Cellular Proteostasis“ im November 2011 werden exzellente Forschung und Promovierendenausbildung noch enger verzahnt.

Originalveröffentlichung:
K. Betz, D. A. Malyshev, T. Lavergne, W. Welte, K. Diederichs, T. J. Dwyer, P. Ordoukhanian, F. E. Romesberg, A. Marx “KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry” Nature Chem. Biol. 2012, Published online 3 June 2012.

Die gesamte Publikation online unter:
http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.966.html

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Universität Konstanz
Karin Betz
Graduiertenschule Chemische Biologie
Telefon: 07531 / 88 2289
E-Mail: karin.betz@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de
http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.966.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die Zacken in der Viruskrone
07.04.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Auf der Suche nach neuen Antibiotika
07.04.2020 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics