Enzyme bei der Arbeit: Aufspaltung widerspenstiger Cellulose

Wie die Forschenden den Prozess der Celluloseaufspaltung an der Oberfläche beobachtet und dokumentiert haben, ist aktuell in Nature Communications veröffentlicht. © Lunghammer - TU Graz

Kraftstoffe aus Biomasse werden immer wichtiger. Abgesehen von Biomethan können sie aber noch nicht effizient, kostengünstig und nachhaltig produziert werden, der technische und finanzielle Aufwand ist derzeit noch zu hoch. „Mitschuld“ daran trägt Cellulose, ein Polysaccharid und Pflanzenbestandteil, der nicht wasserlöslich und damit schwer zu verarbeiten ist.

Oxidative Enzyme

Im Normalfall verwenden Bioraffinerien – so wie es auch in natürlichen Abbauprozessen geschieht – einen Mix aus hydrolytisch aktiven, also Wasser benötigenden Enzymen für den Abbau von pflanzlichen Rohstoffen.

Vor einiger Zeit entdeckte man oxidative Enzyme, die unter Zuhilfenahme von Sauerstoff arbeiten und gemeinsam mit den hydrolytischen Enzymen Cellulose bereits wesentlich besser spalten können. Wie diese oxidativen Enzyme – genannt LPMOs (lytic polysaccharide monooxygenase) – aber genau arbeiten, war nicht bekannt. An genau diesem Punkt setzten die Forschenden der TU Graz an.

Enzyme unter dem Rasterkraftmikroskop

Mittels Rasterkraftmikroskopie konnten die Forschenden nun erstmalig die Enzyme bei ihrer aufspaltenden Arbeit an der Oberfläche der Cellulosepartikel beobachten und einen direkten Nachweis ihrer Aktivität erbringen. Bereits seit mehreren Jahren arbeitet das Institut für Biotechnologie und Bioprozesstechnik dafür eng mit dem Grazer Zentrum für Elektronenmikroskopie zusammen.

Für die aktuell in Nature Communications publizierte Studie wurde in einem ersten Schritt das schon länger bekannte, hydrolytisch aktive Enzym Trichoderma reesei CBH I beobachtet. Es setzt sich an der Oberfläche eines Partikels fest, wandert die Polysaccheridketten entlang und spaltet Schritt für Schritt immer mehr kleine Teile davon ab.

In einem weiteren Schritt wurde beobachtet, wie sich das Verhalten der Enzyme veränderte, wenn LPMOs beigemengt wurden. Hier konnten die Forschenden nachweisen, dass die LPMOs einerseits mehr Bindestellen für die hydrolytisch aktiven Enzyme an der Oberfläche erzeugen und andererseits die Enzymdynamik an der Oberfläche wesentlich zunahm.

Ein Bild sagt mehr als tausend Worte

Mit dieser Studie will man einerseits auf Grundlagenebene zum besseren Verständnis dieser Vorgänge beitragen und andererseits in einem weiteren Schritt die Herstellung von Biokraftstoffen vereinfachen. „Üblicherweise untersucht man in der Chemie lösliche Produkte, misst beispielsweise die Konzentration, um etwas über die Reaktion zu lernen.

Das ist aber wie in diesem Fall bei einer Reaktion an der Oberfläche eines Festkörpers nicht praktikabel. Wir wollten den Schritt davor, also den Prozess der Celluloseaufspaltung, an der Oberfläche beobachten und dokumentieren“, so Manuel Eibinger, Erstautor der Studie und Postdoktorand am Institut für Biotechnologie und Bioprozesstechnik.

Bernd Nidetzky, Leiter des Instituts für Biotechnologie und Bioprozesstechnik der TU Graz: „Man könnte hier das Sprichwort bedienen: Ein Bild sagt mehr als tausend Worte. Wir wollten mit dieser Studie eine zeitlich aufgelöste Dokumentation der Vorgänge erstellen. Und das ist uns nun gelungen.“

Zur Publikation in Nature Communications:
Single molecule study of oxidative enzymatic deconstruction of cellulose. Manuel Eibinger, Jürgen Sattelkow, Thomas Ganner, Harald Plank & Bernd Nidetzky. Nature Communications. DOI 10.1038/s41467-017-01028-y. https://www.nature.com/articles/s41467-017-01028-y

An der TU Graz ist dieses Forschungsthema im Field of Expertise „Human & Biotechnology“ verankert, einem von fünf strategischen Forschungsschwerpunkten.

Kontakt:
Bernd NIDETZKY
Univ.-Prof.Dipl.-Ing. Dr.techn.
Institut für Biotechnologie und Bioprozesstechnik
Petersgasse 10-12
8010 Graz
Tel.: +43 316 873 8400
E-Mail: bernd.nidetzky@tugraz.at

Manuel EIBINGER
Dipl.-Ing. Dr.techn. BSc
Institut für Biotechonologie und Bioprozesstechnik
Petersgasse 10-12
8010 Graz
Tel.: +43 316 873 8409
E-Mail: m.eibinger@tugraz.at

https://www.nature.com/articles/s41467-017-01028-y Link zum Paper in Nature Communications

Media Contact

Mag. Susanne Eigner Technische Universität Graz

Weitere Informationen:

http://www.tugraz.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer