Entwicklung eines grösseren Gehirns

Das Bild zeigt das sich entwickelnde Gehirn eines Frettchens. Magenta markiert Gliazellen und zeigt deutlich die äußere Kontur des Gehirns. Der grüne Bereich enthält Neurone, die ARHGAP11B enthalten. Kalebic / Gilardi / MPI-CBG

Das menschliche Gehirn verdankt sein charakteristisches, gefaltetes Aussehen seiner äußeren Schicht, der Großhirnrinde. Während der Evolution des Menschen vergrößerte sich der Neocortex, der evolutionär jüngste Teil der Großhirnrinde, erheblich und musste sich falten, um in den begrenzten Raum der Schädelhöhle zu passen.

Der menschliche Neokortex ermöglicht höhere kognitive Fähigkeiten wie das Denken oder die Sprache. Aber wie ist der menschliche Neokortex so groß geworden? Die Antwort könnte in Genen liegen, die nur dem Menschen eigen sind, wie beispielsweise das Gen ARHGAP11B.

Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden fanden nun heraus, dass dieses menschenspezifische Gen bei Frettchen eine Vergrößerung des Neokortex bewirken kann. ARHGAP11B veranlasst neuronale Vorläuferzellen dazu, über einen längeren Zeitraum hinweg mehr dieser Zellen zu bilden.

Das Ergebnis ist ein vergrößerter Neokortex. Die Forscher veröffentlichten ihre Ergebnisse in der Fachzeitschrift eLife.

Der menschliche Neokortex ist etwa dreimal so groß wie der unserer nächsten Verwandten, der Schimpansen, und ist der Sitz vieler höherer kognitiver Funktionen, wie unsere Sprache oder die Fähigkeit zu lernen. Eine Schlüsselfrage für Wissenschaftler ist, wie während der Evolution des Menschen der Neocortex so groß wurde.

In einer Studie aus dem Jahr 2015 hatte das Forscherteam um Wieland Huttner, Direktor und Forschungsgruppenleiter am MPI-CBG, festgestellt, dass Mäuse unter dem Einfluss des human-spezifischen Gens ARHGAP11B im embryonalen Neokortex viel mehr neuronale Vorläuferzellen produzieren und sogar ihren normalerweise glatten Neokortex falten können.

Diese Ergebnisse deuteten darauf hin, dass das Gen ARHGAP11B eine Schlüsselrolle bei der evolutionären Expansion des menschlichen Neokortex spielen könnte.

Es gibt zwei Arten von neuronalen Vorläuferzellen im Neokortex von Säugetieren: apikale und basale. Ein bestimmter Typ der letzteren, die sogenannten basalen radialen Gliazellen, sind eine Hauptursache für das Wachstum des Neokortex während der embryonalen Entwicklung.

Mäuse besitzen nur sehr wenige dieser Zellen. Daher sind Mäuse ungeeignet, um zu untersuchen, ob das human-spezifische Gen ARHGAP11B durch seine Wirkung auf basale radiale Gliazellen tatsächlich eine Vergrößerung des Neokortex bewirken kann. Ein Forscherteam der Forschungsgruppe von Wieland Huttner untersuchte nun, was ARHGAP11B im Gehirn von Frettchen bewirken würde.

Frettchen haben einen größeren Neokortex als Mäuse und besitzen mehr basale radiale Gliazellen. Der Erstautor der Studie, Nereo Kalebic, erklärt, was er dabei beobachten konnte: „Bei Frettchen hat ARHGAP11B die Anzahl der basalen radialen Gliazellen deutlich erhöht. Es verlängerte auch das Zeitfenster, in dem die basalen radialen Gliazellen Neurone produzierten. Infolgedessen enthielten diese Frettchen-Hirne mehr Neurone und hatten somit einen größeren Neokortex.“

Diese Ergebnisse deuten darauf hin, dass ARHGAP11B eine ähnliche Rolle bei der Entwicklung des menschlichen Gehirns spielen könnte. Diese Studie liefert auch den ersten Beweis dafür, dass ein human-spezifisches Gen die Bildung von mehr basalen radialen Gliazellen in einem gefalteten Neokortex auslösen kann.

Wieland Huttner, der die Studie betreut hat, gibt einen Ausblick: „Wir müssen weitere Experimente durchführen, um herauszufinden, ob die Frettchen mit einem größeren Neokortex auch eine verbesserte kognitive Leistungsfähigkeit aufweisen. Wenn ja, könnten solche Studien neue Einblicke in die menschliche Kognition ermöglichen.“

Wieland Huttner
+49 (0) 351 210 1500
huttner@mpi-cbg.de

Nereo Kalebic
+49 (0) 351 210 2516
kalebic@mpi-cbg.de

Nereo Kalebic, Carlotta Gilardi, Mareike Albert, Takashi Namba, Katherine R Long, Milos Kostic, Barbara Langen, Wieland B Huttner: “Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex” eLife, 28. November, 2018.

Media Contact

Katrin Boes Max-Planck-Institut für molekulare Zellbiologie und Genetik

Weitere Informationen:

https://www.mpi-cbg.de/de/home/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer