Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfach mal (Gene) abschalten: Erstmals Funktionsanalyse nicht-proteinkodierender Gene möglich

22.08.2011
Unser Erbgut enthält zahlreiche Gene, die keine Bauanleitung für Proteine tragen. Viele davon werden in Krebszellen besonders häufig abgelesen.

Wissenschaftler im Deutschen Krebsforschungszentrum und im Universitätsklinikum Heidelberg entdeckten erstmals einen Weg, um die Funktion dieser Gene in Zellen zu überprüfen.

Sie fügten gezielt Signale in die Gensequenz ein, die bewirken, dass die abgelesenen RNA-Moleküle sofort abgebaut werden. Anschließend suchten die Forscher nach Veränderungen der Zellbiologie um daraus abzuleiten, ob und wie die nicht-proteinkodierenden Gene an der Krebsentstehung beteiligt sind.

Bei der Untersuchung von Krebszellen entdecken Forscher zahlreiche molekulare Auffälligkeiten: Bestimmte RNA-Moleküle liegen in großer Anzahl vor, bestimmte Gene sind überaktiv. Haben diese Auffälligkeiten einen Bezug zum Krebs? Treiben sie das Zellwachstum an? Schalten sie Wachstumsbremsen aus oder aber handelt es sich um eine bloße Laune der Natur? Wichtige Hinweise auf diese Fragen erhalten Wissenschaftler aus so genannten Funktionsverlust-Untersuchungen: Die Forscher schalten das betroffene Gen in lebenden Zellen oder ganzen Organismen aus und beobachten anschließend, was sich im Stoffwechsel, in der Physiologie oder am Verhalten der Zellen ändert, ob also bestimmte zelluläre Funktionen ausfallen.

„Es fehlte bisher aber eine Methode, mit der wir auch solche Gene gezielt ausschalten können, die keine Bauanleitung für Proteine tragen“, sagt Dr. Sven Diederichs, der eine Nachwuchsgruppe im Deutschen Krebsforschungszentrum und im Institut für Pathologie der Universität Heidelberg leitet. Mit seinem Team entwickelte der Molekularbiologe nun ein neues Verfahren, um solche nicht-proteinkodierenden Gene gezielt zum Schweigen zu bringen und so ihre Funktion zu bestimmen. „Gerade bei vielen Krebserkrankungen finden wir, dass bestimmte nicht-proteinkodierende Gene besonders aktiv sind. Wir wollen deshalb verstehen, was die von diesen Genen abgelesenen RNA-Moleküle in den Tumorzellen bewirken.“

Diederichs und sein Team nutzen für ihre Methode die Zink-Finger-Nukleasen, synthetische Eiweißmoleküle, die das Erbgut an genau definierten Stellen zerschneiden, so dass die Wissenschaftler damit gezielt Gene ansteuern und durchtrennen können. Nach dem Durchtrennen setzen Reparaturmechanismen der Zelle die beiden Enden zwar wieder zusammen. Bei proteinkodierenden Genen funktioniert das Abschalten trotzdem gut: Meist flicken die Reparaturenzyme nicht präzise und bauen kleine Fehler ein. Das zerstört die Proteininformation, so dass die Eiweiße nicht mehr gebildet werden können.

Bei nicht-proteinkodierende Genen spielen jedoch solche kleinen Fehler keine Rolle, so dass das reine Zerschneiden nicht zum gewünschten Ergebnis führt: Nach dem Flicken entsteht einfach wieder ein funktionsfähiges Gen, von dem RNA-Moleküle abgelesen werden. Hier behalfen sich die Heidelberger Forscher mit einem Trick: Die Reparatureiweiße können beim Flicken der beiden Enden auch kleine DNA-Abschnitte einbauen. Also fügten die Molekularbiologen an der durchtrennten Stelle eine Signalsequenz ein. Sie sorgt dafür, dass das von diesem Gen abgeschriebenen RNA-Molekül sogleich abgebaut wird und daher nicht für zelluläre Funktionen zur Verfügung steht. Die daraus resultierenden Veränderungen in der Zellbiologie lassen sich anschließend umfassend analysieren.

„Wir haben jetzt erstmals die Möglichkeit, die nicht-proteinkodierenden Gene vollständig abzuschalten und so deren molekulare und zelluläre Funktionen zu untersuchen“, erklärt Sven Diederichs das Ziel seines Forschungsansatzes. „Es ist sehr wahrscheinlich, dass diese Gene bei der Krebsentstehung eine wichtige Rolle spielen. Es ist sicher kein Zufall, dass sie ausgerechnet in Tumorzellen so aktiv sind.“

Tony Gutschner, Marion Baas und Sven Diederichs: Non-coding RNA Gene Silencing through genomic integration of RNA destabilizing elements using Zinc Finger Nucleases. Genome Research 2011, Doi:10.1101/gr.122358.111

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Ansätze, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Daneben klären die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen
16.07.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

16.07.2018 | Physik Astronomie

Rostocker Forscher testen neue Generation von Offshore-Windenergie-Anlagen

16.07.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics