Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Chip mit echten Blutgefäßen

13.11.2018

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen Blutgefäßen, ist allerdings eine viel schwierigere Aufgabe.


Der Biochip: Kleines Design mit großer Wirkung. In jeder der vier Kammern können unterschiedliche Wachstumsbedingungen, die großen Einfluss auf die Anzucht künstlicher Gefäße haben, erzeugt werden.

TU Wien


Das Team der CellChipGroup, das sich mit Gewebezüchtung am Chip befasst: DI Barbara Bchmann, Prof. Peter Ertl und Dr. Mario Rothbauer (v.l.n.r.)

TU Wien

Biologisch wichtige Transportprozesse, etwa von Sauerstoff, Zucker und anderen Substanzen ins Gewebe, hat man bis heute noch nicht zur Gänze verstanden. Das soll sich nun mit einer ganz neuen Herangehensweise an das Problem ändern:

An der TU Wien baut man Mini-Gewebe am Biochip nach – so genannte „Organs-on-a-Chip“. So kann man komplizierte biologische Prozesse präzise steuern, kontrollieren und messen - viel besser als es in Tierversuchen oder direkt am Menschen möglich wäre.

Besser als Tierversuche

„Rund um eine frische Wunde muss neues Gewebe nachwachsen, in dem sich unter anderem auch neue Blutgefäße bilden“, erklärt Dipl-Ing. Barbara Bachmann vom Institut für Angewandte Synthesechemie der TU Wien. „Wir machen uns diese natürlichen, körpereigenen Wundheilungsprozesse zu Nutze, um Blutgefäße im Labor in ganz kleinen Biochips zu züchten.“

Lange Zeit war man bei solchen Forschungsansätzen ausschließlich auf Tierversuche angewiesen. „Tierversuche haben viele Nachteile – nicht nur auf ethischer, sondern auch auf wissenschaftlicher Ebene“, sagt der Arbeitsgruppenleiter Prof. Peter Ertl.

„Ihre Resultate sind nie hundertprozentig auf den Menschen übertragbar, und so kommt es bei klinischen Studien immer wieder zu überraschenden Nebenwirkungen, die sich im Tiermodell nicht gezeigt hatten.“

Nun kann man mit Biochip-Technologie hochpräzise regulieren, mit welchen Substanzen die menschlichen Gefäßzellen versorgt werden. Dadurch ist es möglich, menschliche Zellen über mehrere Wochen hinweg zu kultivieren und zu untersuchen.

„Wir verwenden neben Endothelzellen, die Gefäßinnenseiten auskleiden, auch Stammzellen, die maßgeblich zur Gefäßstabilisierung beitragen.“, sagt Dr. Mario Rothbauer. „Innerhalb von Tagen beginnt sich wie von Zauberhand im Biochip ein Netzwerk winziger Blutgefäße auszubilden.“

Direkt neben diesem neuentstandenen Geflecht an feinen Blutkapillaren führt die Leitung vorbei, durch die das Gewebe von außen mit Sauerstoff und Nährstoffen versorgt wird – die „künstliche Arterie“ des Biochips. Die feinen, natürlich gewachsenen Blutgefäße sind nicht direkt mit dieser künstlichen Leitung verbunden, aber die Grenzen zwischen den beiden Bereichen sind nicht dicht, daher findet ein permanenter Stoffaustausch statt.

„Das ist eine Situation, die in der Medizin eine wichtige Rolle spielt“, sagt Prof. Peter Ertl: „Einerseits bei der Wundheilung, andererseits aber auch bei Krankheitsbildern wie Krebs.“ Ein schnell wachsender Tumor muss es schaffen, mit ausreichenden Mengen an Nährstoffen versorgt zu werden – darum sorgt er für unnatürlich schnelles Wachstum feiner Blutkapillaren. Wie der Stoffaustausch genau abläuft, kann nun viel besser als bisher möglich im Chip untersucht werden.

„Wir konnten zeigen, dass dort Stoffaustausch und Versorgung im Gewebe tatsächlich vom Abstand zur Zufluss-Leitung abhängen, wie das auch in einem natürlichen Gewebe der Fall wäre“, sagt Dipl.-Ing. Sarah Spitz. „Und ganz entscheidend ist: Wir konnten nachweisen, dass sich die Stoffzufuhr ins Gewebe fein regulieren lässt indem wir die Flussgeschwindigkeit in den Biochips verändern – so einfach ist das.“

Interdisziplinäre Forschung

In diesem Forschungsbereich greifen mehrere wissenschaftliche Disziplinen eng ineinander – Medizin und Chemie, aber auch Mikrofluidik – die Wissenschaft vom Strömungsverhalten winziger Stoffmengen, oder auch Materialwissenschaft und Fertigungstechnik – um die präzise Herstellung der Chips überhaupt erst zu ermöglichen. Die TU Wien arbeitete dabei mit dem Ludwig Boltzmann Institut für Experimentelle und Klinische Traumatologie zusammen, unterstützt durch das „Interreg“-Förderprogramm der Europäischen Union.

„Nur durch diese interdisziplinäre Vielfalt können wir uns einen Vorsprung herausarbeiten und Forschungsergebnisse erzielen, die international für Aufsehen sorgen“, sagt Peter Ertl. „Unsere Ergebnisse zeigen, dass die Bio-Chips ein ausgezeichnetes Modell bieten, um die Sauerstoffzufuhr in neu gebildeten Geweben zu studieren. Das ist für uns erst der Beginn. Die Forschungsfragen, die sich dadurch nun auftun, lassen sich noch gar nicht überblicken.“

Wissenschaftliche Ansprechpartner:

Prof. Peter Ertl
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163605
peter.ertl@tuwien.ac.at

Dipl.-Ing. Barbara Bachmann (barbara.bachmann@tuwien.ac.at)
Dr. Mario Rothbauer (mario.rothbauer@tuwien.ac.at)
Sarah Spitz (sarah.spitz@tuwien.ac.at)
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163724

Originalpublikation:

Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling, https://aip.scitation.org/doi/10.1063/1.5027054

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle
19.06.2019 | Ruhr-Universität Bochum

nachricht Wie sich Bakterien gegen Plasmabehandlung schützen
19.06.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics