Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Zellschicksal auf die Schliche kommen

27.07.2016

Ein internationales Forscherteam unter Leitung von ETH-Wissenschaftlern untersuchte, welche Faktoren die Entwicklung der verschiedenen Blutzellen beeinflussen. Dabei zeigte sich: Gewisse molekulare Mechanismen sind nicht so relevant wie bisher gedacht. Diese Erkenntnis ist hilfreich, um Krankheiten wie Leukämie oder Anämien besser zu verstehen.

Biologisch gesehen ist eine Zelle die kleinste Funktionseinheit lebender Organismen. Die Anzahl der Zellen im menschlichen Körper ist gigantisch und erreicht die Grössenordnung von 10 bis 100 Billionen – je nach Körpergrösse und Gewicht.


Blutstammzellen im Knochenmark bilden sowohl rote als auch weisse Blutzellen.

Grafik: Colourbox

Quelle: ETH Zürich

Die meisten dieser Zellen sind ausdifferenziert; sie nehmen im Körper spezifische Funktionen wahr. Andere Zellen, die sogenannten Stammzellen, können sich durch Teilung unbeschränkt selbst erneuern und sorgen für Nachschub an ausdifferenzierten Körperzellen.

Denn die Lebensdauer gewisser Körperzellen ist relativ kurz: Zum Beispiel sterben manche weisse Blutkörperchen (Leukozyten) und Blutplättchen (Thrombozyten) bereits nach Stunden bis einigen Tagen ab, rote Blutkörperchen (Erythrozyten) nach rund 4 Monaten.

Blutbildende Stammzellen

Blutstammzellen im Knochenmark bilden daher jede Sekunde Millionen neuer Blutzellen. Diese Blutstammzellen sind sogenannt multipotent; aus ihnen können alle Arten von Blutzellen mit unterschiedlichen Funktionen hervorgehen: Rote Blutzellen, zuständig für den Sauerstofftransport, für die Immunabwehr verantwortliche weisse Blutzellen und Blutplättchen, wichtig für die Blutgerinnung.

Wie Blutstammzellen die verschiedenen Zelltypen entwickeln, ist bis heute erst in Ansätzen verstanden. Der Weg der Differenzierung, also die Entscheidung, zu welchem Zelltyp sich eine Zelle entwickelt, hängt von verschiedenen äusseren und inneren Faktoren ab.

Timm Schroeder, Professor am Departement Biosysteme der ETH Zürich mit Sitz in Basel, erforscht zusammen mit seinem Team die Faktoren, die bei der Ausrichtung der einzelnen Blutzellen eine Rolle spielen. «Die Regulation der Differenzierungsrichtung von Blutstammzellen ist für die normale tagtägliche Aufrechterhaltung der Blutbildung essentiell», erklärt Schroeder. «Wenn sie nicht richtig funktioniert, entstehen lebensbedrohliche Erkrankungen wie Anämien und Leukämien. Daher möchten wir den molekularen Mechanismus dieser Regulation besser verstehen.»

Beobachtung auf molekularer Ebene

Der Zellbiologe analysierte zusammen mit seinem Team, wie sich Blutstammzellen in die verschiedenen Arten von Blutzellen ausdifferenzieren und wie Moleküle im Zellkern (Transkriptionsfaktoren) diesen komplexen Vorgang steuern. Zusammen mit dem Helmholtz Zentrum München (Forschungszentrum für Gesundheit und Umwelt) entwickelten sie dafür eine neue Mikroskopietechnik zur Zellbeobachtung – eine spezielle Einrichtung, die es nun weltweit in nur sehr wenigen Stammzell-Labors gibt.

Besonders die beiden Proteine GATA1 und PU.1 standen im Fokus der Forscher. Diese spielen eine wichtige Rolle bei der Ausdifferenzierung von Blutzellen, erzählt Timm Schroeder. «Sie sind Transkriptionsfaktoren, welche umfangreiche genetische Programme mit vielen Zielgenen an- oder abschalten können. Das macht sie zu mächtigen Regulatoren von Zellschicksalen.»

Vielversprechendes Potenzial

So konnten die Grundlagenforscher mittels Zeitraffer-Mikroskopie lebende Blutstammzellen mit bisher nicht gekannter Präzision bei der Ausreifung beobachten und die beiden Proteine GATA1 und PU.1 quantifizieren. «Während Jahrzehnten dachte man, dass diese beiden Transkriptionsfaktoren die Linienentscheidungen von Blutstammzellen treffen. Nun konnten wir zeigen, dass dies nicht der Fall ist und dass andere Mechanismen für diese Entscheidungen verantwortlich sein müssen», erklärt Schroeder. Die Forschung müsse sich nun auf andere molekulare Mechanismen konzentrieren, um die sehr komplexe Blutstammzell-Differenzierung zu verstehen.

Blutkrankheiten wie zum Beispiel Leukämie sind schwere Störungen des blutbildenden Systems im Knochenmark. Um solche Krankheiten in Zukunft besser zu verstehen und erfolgreich zu therapieren, sind genaue Kenntnisse über die Entstehung der einzelnen Blutzellen wichtig. Ein Grundstein dazu wurde jetzt an der ETH Zürich gelegt.

Literaturhinweis

Hoppe SP et al.: Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 2016, 535: 299-302, doi: 10.1038/nature18320 [http://dx.doi.org/10.1038/nature18320]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/07/dem-zellsc...

News und Medienstelle | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics