Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Zellschicksal auf die Schliche kommen

27.07.2016

Ein internationales Forscherteam unter Leitung von ETH-Wissenschaftlern untersuchte, welche Faktoren die Entwicklung der verschiedenen Blutzellen beeinflussen. Dabei zeigte sich: Gewisse molekulare Mechanismen sind nicht so relevant wie bisher gedacht. Diese Erkenntnis ist hilfreich, um Krankheiten wie Leukämie oder Anämien besser zu verstehen.

Biologisch gesehen ist eine Zelle die kleinste Funktionseinheit lebender Organismen. Die Anzahl der Zellen im menschlichen Körper ist gigantisch und erreicht die Grössenordnung von 10 bis 100 Billionen – je nach Körpergrösse und Gewicht.


Blutstammzellen im Knochenmark bilden sowohl rote als auch weisse Blutzellen.

Grafik: Colourbox

Quelle: ETH Zürich

Die meisten dieser Zellen sind ausdifferenziert; sie nehmen im Körper spezifische Funktionen wahr. Andere Zellen, die sogenannten Stammzellen, können sich durch Teilung unbeschränkt selbst erneuern und sorgen für Nachschub an ausdifferenzierten Körperzellen.

Denn die Lebensdauer gewisser Körperzellen ist relativ kurz: Zum Beispiel sterben manche weisse Blutkörperchen (Leukozyten) und Blutplättchen (Thrombozyten) bereits nach Stunden bis einigen Tagen ab, rote Blutkörperchen (Erythrozyten) nach rund 4 Monaten.

Blutbildende Stammzellen

Blutstammzellen im Knochenmark bilden daher jede Sekunde Millionen neuer Blutzellen. Diese Blutstammzellen sind sogenannt multipotent; aus ihnen können alle Arten von Blutzellen mit unterschiedlichen Funktionen hervorgehen: Rote Blutzellen, zuständig für den Sauerstofftransport, für die Immunabwehr verantwortliche weisse Blutzellen und Blutplättchen, wichtig für die Blutgerinnung.

Wie Blutstammzellen die verschiedenen Zelltypen entwickeln, ist bis heute erst in Ansätzen verstanden. Der Weg der Differenzierung, also die Entscheidung, zu welchem Zelltyp sich eine Zelle entwickelt, hängt von verschiedenen äusseren und inneren Faktoren ab.

Timm Schroeder, Professor am Departement Biosysteme der ETH Zürich mit Sitz in Basel, erforscht zusammen mit seinem Team die Faktoren, die bei der Ausrichtung der einzelnen Blutzellen eine Rolle spielen. «Die Regulation der Differenzierungsrichtung von Blutstammzellen ist für die normale tagtägliche Aufrechterhaltung der Blutbildung essentiell», erklärt Schroeder. «Wenn sie nicht richtig funktioniert, entstehen lebensbedrohliche Erkrankungen wie Anämien und Leukämien. Daher möchten wir den molekularen Mechanismus dieser Regulation besser verstehen.»

Beobachtung auf molekularer Ebene

Der Zellbiologe analysierte zusammen mit seinem Team, wie sich Blutstammzellen in die verschiedenen Arten von Blutzellen ausdifferenzieren und wie Moleküle im Zellkern (Transkriptionsfaktoren) diesen komplexen Vorgang steuern. Zusammen mit dem Helmholtz Zentrum München (Forschungszentrum für Gesundheit und Umwelt) entwickelten sie dafür eine neue Mikroskopietechnik zur Zellbeobachtung – eine spezielle Einrichtung, die es nun weltweit in nur sehr wenigen Stammzell-Labors gibt.

Besonders die beiden Proteine GATA1 und PU.1 standen im Fokus der Forscher. Diese spielen eine wichtige Rolle bei der Ausdifferenzierung von Blutzellen, erzählt Timm Schroeder. «Sie sind Transkriptionsfaktoren, welche umfangreiche genetische Programme mit vielen Zielgenen an- oder abschalten können. Das macht sie zu mächtigen Regulatoren von Zellschicksalen.»

Vielversprechendes Potenzial

So konnten die Grundlagenforscher mittels Zeitraffer-Mikroskopie lebende Blutstammzellen mit bisher nicht gekannter Präzision bei der Ausreifung beobachten und die beiden Proteine GATA1 und PU.1 quantifizieren. «Während Jahrzehnten dachte man, dass diese beiden Transkriptionsfaktoren die Linienentscheidungen von Blutstammzellen treffen. Nun konnten wir zeigen, dass dies nicht der Fall ist und dass andere Mechanismen für diese Entscheidungen verantwortlich sein müssen», erklärt Schroeder. Die Forschung müsse sich nun auf andere molekulare Mechanismen konzentrieren, um die sehr komplexe Blutstammzell-Differenzierung zu verstehen.

Blutkrankheiten wie zum Beispiel Leukämie sind schwere Störungen des blutbildenden Systems im Knochenmark. Um solche Krankheiten in Zukunft besser zu verstehen und erfolgreich zu therapieren, sind genaue Kenntnisse über die Entstehung der einzelnen Blutzellen wichtig. Ein Grundstein dazu wurde jetzt an der ETH Zürich gelegt.

Literaturhinweis

Hoppe SP et al.: Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 2016, 535: 299-302, doi: 10.1038/nature18320 [http://dx.doi.org/10.1038/nature18320]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/07/dem-zellsc...

News und Medienstelle | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers
27.02.2020 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Haltbar und frisch - Neutronen zeigen Details des Prozesses der Gefriertrocknung
27.02.2020 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bonner Mediziner etablieren weltweit neues, leicht tragbares Ultraschallsystem aus den USA für die Lehre am Krankenbett

27.02.2020 | Medizintechnik

Gegen multiresistente Tuberkulose-Erreger: Mit künstlicher Intelligenz neuen Wirkstoffkombinationen auf der Spur

27.02.2020 | Medizin Gesundheit

Mikro-Überlebenskünstler: Archaeen bewältigen biologische Methanisierung trotz Asche und Teer

27.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics