Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photochemische Reaktionen im Computer berechnen

22.04.2002


  • Bits und Bytes statt Bunsenbrenner
  • "Physical Review Letters" berichtet über neuen Algorithmus

Chemische Reaktionen, die durch Wärmezufuhr angeregt werden, können Wissenschaftler seit langem im Computer ablaufen lassen. Dr. Nikos Doltsinis und Prof. Dr. Dominik Marx (Lehrstuhl für Theoretische Chemie der RUB) ist es nun erstmals gelungen, diese Methode auch auf die komplizierteren photochemischen Reaktionen anzuwenden. Sie entwickelten dazu einen Algorithmus, der mehrere elektronische Zustände berücksichtigt. Die Zeitschrift "Physical Review Letters" berichtet in ihrer Ausgabe vom 22. April 2002 über die Ergebnisse.

Energiezufuhr durch Wärme oder Licht

Um überhaupt in Gang zu kommen, verbrauchen die meisten chemischen Reaktionen zunächst Energie. Häufig erhalten sie diese als Wärme, z. B. indem ein Bunsenbrenner die Temperatur eines Reaktionsgefäßes erhöht. Eine andere Energiequelle kann das Licht sein, das so genannte Photoreaktionen auslöst. Beispiele für verschachtelte Reaktionen, bei denen eine Photoreaktion am Anfang steht, sind die Photosynthese (Umwandlung von Lichtenergie in organismisch verwertbare Energieformen) und der Sehprozess (Umwandlung von Lichtenergie in Neurosignale). "Viele dieser lichtgetriebenen Reaktionen sind thermisch unmöglich oder führen bei identischen Ausgangssubstanzen zu anderen Produkten als die thermische Analogreaktion", erläutert Prof. Marx.

Komplizierte Photoreaktionen simulieren

Thermische Reaktionen laufen typischerweise in einem einzigen elektronischen Zustand - meist dem Grundzustand - ab. Solche Reaktionen können die Forscher bereits seit gut 15 Jahren "in silico", also im Computer, simulieren. "Wir vereinfachen die Grundgleichungen der Quantenphysik, münzen sie in Rechenvorschriften um und lösen sie näherungsweise auf Großrechnern", so Marx. Eine effiziente Methode dazu ist die 1985 eingeführte "Car-Parrinello Molekulardynamik" (CP-MD). Photoreaktionen sind komplizierter, da sie mindestens zwei elektronische Zustände benötigen, die zudem (über sog. "nichtadiabatische Kopplungen") miteinander verquickt sind. Mit einem neuen Algorithmus gelang es Doltsimis und Marx nun, das CP-MD-Verfahren auf Photoreaktionen zu erweitern (nichtadiabatische CP-MD). Ihre Methode kann, im Gegensatz zu ähnlichen Ansätzen, Photoreaktionen sehr effizient und auch für komplexe Moleküle berechnen.

Große und gelöste Moleküle untersuchen

Um mit anderen Rechnungen vergleichen zu können, testeten die Forscher ihre Methode zunächst an einer bekannten Photoreaktion eines kleinen Moleküls in der Gasphase. Ideale Anwendungsgebiete der nichtadiabatischen CP-MD sind jedoch gerade die Untersuchung großer Moleküle, etwa DNA Basenpaare, oder von Molekülen in Lösung. Sie kommen in Reaktionskolben chemischer Labors und in biologischen Organismen am häufigsten vor.

Titelaufnahme

Nikos L. Doltsinis; Dominik Marx: Nonadiabatic Car-Parrinello Molecular Dynamics. In: Physical Review Letters, Band 88, Nr. 16, Seite 166402, 2002 

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, Fax: 0234/32-14045, E-Mail:  dominik.marx@theochem.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.ruhr-uni-bochum.de/go/surfhop.html

Weitere Berichte zu: CP-MD Molekül Photoreaktion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Darmbakterien das Herzinfarktrisiko beeinflussen
10.12.2018 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Innovationsfonds – Motor für bessere Versorgung

10.12.2018 | Förderungen Preise

Neue Methode verpasst Mikroskop einen Auflösungsschub

10.12.2018 | Physik Astronomie

Diabetes Typ 1 - Studien zeigen: Insulinpumpen wirken sich positiv auf Blutzuckerwerte

10.12.2018 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics