Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Werkstatt für gestresste Proteine

28.03.2002


Max-Planck-Wissenschaftler entschlüsseln molekulare Maschine, die in allen Zellen wahlweise als Faltungshelfer oder als Zerkleinerungsmaschine für Proteine arbeitet

Geraten Proteine unter Stress, verlieren sie ihre Fassung und können ihre Aufgaben nicht mehr richtig wahrnehmen. Glücklicherweise besitzt jede Zelle eine Maschinerie, die in solchen Situationen hilft. Dazu gehört auch das Protein DegP, das über die Fähigkeit verfügt, gestresste Proteine wieder in Form zu bringen. Gelingt ihm das jedoch nicht, ändert DegP seine Einstellung und - statt zu reparieren - liquidiert es die beschädigten Proteine, bevor sie der Zelle gefährlich werden können. Wissenschaftler vom Max-Plank-Institut für Biochemie (Martinsried) in der von Nobelpreisträger Prof. Robert Huber geleiteten Abteilung "Strukturforschung" ist es jetzt gelungen, die dreidimensionalen Struktur von DegP aufzuklären und wichtige Einsichten zu liefern, wie diese molekulare Maschine über "Reparatur oder Verschrottung" anderer Proteine entscheidet (nature, 28. März 2002). Dieses Wissen hat auch Bedeutung für ein besseres Verständnis der zellulären Vorgänge bei neurodegenerativen Erkrankungen.

Der reibungslose Ablauf der lebenserhaltenden Maschinerie in Zellen ist nur dann gewährleistet, wenn alle daran beteiligten Komponenten - zumeist Proteine - wie ein Zahnrad in das andere greifen. Hierzu müssen sie eine definierte dreidimensionale Struktur besitzen, denn nur korrekt gefaltete Proteine sind in der Lage, zelluläre Bausteine spezifisch zu erkennen. Bei extern verursachten Stresssituationen, die auftreten, wenn es zum Beispiel zu heiß wird, kann es sehr schnell dazu kommen, dass die Proteine ihre charakteristische Form verlieren und deshalb ihre vielfältigen Aufgaben nicht mehr erfüllen können. Die defekten Proteine stellen nun selbst eine tödliche Gefahr für die Zelle dar: Sie tendieren dazu, sich mit anderen deformierten Eiweißen zusammenzulagern und zu riesigen Aggregaten zu verklumpen. Extreme Beispiele für die negativen Auswirkungen solcher Protein-Verklumpung sind das Kreuzfeld-Jakob Syndrom und die Alzheimersche Krankheit, bei denen es zu bestimmten Proteinablagerungen in den Nervenzellen des Gehirns kommt.

Um dieses negative Szenario zu verhindern, produziert die Zelle in extremen Situationen eine Reihe so genannter "Hitzeschockproteine". Diese sorgen dafür, dass der Anteil an Proteinen, die nicht in Form sind, möglichst niedrig gehalten wird. Hitzeschockproteine lassen sich in zwei Kategorien einteilen: Zum einen gibt es die Gruppe der Chaperone, der heilenden "Anstandsdamen", die versuchen, entfaltete Proteine wieder in ihren funktionellen Zustand zurückzuführen. Ist diese Reparatur nicht möglich, wird eine andere Gruppe von Hitzeschockproteinen aktiv. Diese gehen weniger zimperlich mit den gestressten Proteinen um und sorgen dafür, dass hoffnungslos defekte Fälle in ihre molekularen Bruchstücke zerlegt und so unschädlich gemacht werden. Dabei ist noch völlig unklar, welche "technischen Befunde" ausschlaggebend sind, dass ein Protein von einem Chaperon oder einer Protease bearbeitet wird, oder anders formuliert, was einen "Totalschaden" bei einem Protein-Kandidaten ausmacht.

Das Martinsrieder Forschungsteam hat sich bei der Untersuchung dieser fundamentalen biologischen Fragestellung auf das Hitzeschockprotein DegP konzentriert. Interessanterweise vereinigt DegP die gegensätzlichen Eigenschaften von Protease und Chaperon in sich. Bereits vor drei Jahren hatte die Arbeitsgruppe um Michael Ehrmann (Cardiff University) für das bakterielle Protein gezeigt, dass das Umschalten zwischen den beiden konträren Aktivitäten in Abhängigkeit von der Temperatur erfolgt. Bei Temperaturen unter 30° C ist DegP vorwiegend als "fleißig reparierendes" Chaperon aktiv, bei höheren Temperaturen verwandelt es sich in eine "konsequent verschrottende" Protease. Diese Arbeitsaufteilung ist schlüssig: Bei hohen Temperaturen ist der strukturelle Schaden an den Proteinen größer als bei niedrigen Temperaturen. Von daher scheint es für die Zelle einfacher zu sein, stark deformierte Proteine zu liquidieren, als Energie in ihre Reparatur zu stecken. Bei niedrigen Temperaturen dagegen halten sich die strukturellen Schäden der Proteine in Grenzen, so dass eine Rückfaltung in den funktionellen Zustand ohne großen Aufwand erfolgen kann.

Die entscheidende Voraussetzung zur Bestimmung der Röntgenstruktur von Proteinen ist das Vorhandensein von Proteinkristallen in höchster Qualität. Im Fall von DegP konnten jedoch nur Kristalle minderer Qualität gezüchtet werden, die kaum in der Lage waren, Röntgenstrahlen zu beugen. Den Wissenschaftlern gelang es, die Streueigenschaften der Kristalle durch die längerfristige Lagerung bei 4°C entscheidend zu verbessern. Zudem konnte durch diese Kühlung der kälteliebende Chaperon-Zustand von DegP im Kristall eingefangen werden.

"Abb. 1: Darstellung der molekularen Oberfläche von DegP im offenen (links) und im geschlossenen Zustand (Mitte). Der N-terminale Bereich ist in blau wiedergegeben, die Protease in grün, die PDZ1-Domäne in orange und PDZ2-Domäne in rot. Das Bild auf der rechten Seite zeigt die Überlagerung der beiden Einzelmoleküle, die den beiden Formen zugrunde liegen. Während die Protease-Domäne fixiert ist, kommt es zu einer Umlagerung der PDZ1-Domäne."
"Foto: Max-Planck-Institut für Biochemie"

Die Struktur des DegP-Moleküls besteht aus vier Komponenten: ein N-terminaler Haken, der vom Rest des Proteins absteht, eine Protease-Domäne und zwei PDZ-Domänen (typische Protein-Protein Interaktionsmodule). Die DegP-Moleküle lagern sich zu großen Komplexen zusammen, die eine Art molekularen Käfig bilden. Das Innere dieses Käfigs ist die "Werkstatt" des Proteins, in der sich die proteinspaltenden Arbeitsstätten befinden. Der Komplex konnte im Proteinkristall in zwei Zuständen beobachtet werden: in einer geschlossenen Form, bei der die Eingänge zur Werkstatt verschlossen waren, und in einer offenen Form, in der die PDZ-Domänen - ähnlich wie die Flügeltüren eines Rennwagens - nach oben schwingen und den Käfig öffnen (Abb. 1). Offensichtlich sind die PDZ-Domänen die "Türsteher" dieses Systems, da sie auch als erste Anlaufstelle für die zu reparierenden Proteine dienen. Dank ihrer bemerkenswerten Beweglichkeit arbeiten diese Domänen wie molekulare Tentakel, die umherschwingen, gestresste Proteine einfangen und diese anschließend in dem DegP-Käfig abliefern. Einmal im Käfig eingesperrt, hängt das Schicksal der Proteine von einem fein abgestimmten Zusammenspiel verschiedener molekularer Schalter ab. Diese Schalter funktionieren wie Temperaturfühler, die den Zugang zur Proteindemontage regeln. Öffnet sich dieser Zugang nicht, können sich die eingefangen Proteine über eine recht "angenehme" Umgebung im Innern des DegP-Käfigs erfreuen.

"Abb. 2: Drei Halbschnitte des Proteins DegP zur Veranschaulichung der Eigenschaften seines inneren Käfigs: Die Schnitte links und in der Mitte zeigen eine Aufsicht, der rechte Schnitt eine Seitenansicht des DegP-Proteins. Die schwarz gezeichneten Bereiche entsprechen den Schnittflächen. Die linke Abbildung zeigt die Flexibilität der einzelnen Bereiche: Sehr bewegliche Regionen sind rot, starre Regionen sind blau markiert. Im mittleren Bild sind die hydrophoben Flächen im Innern von DegP grün hervorgehoben. Im rechten Bild wurde - zur Veranschaulichung der Größe von DegP - eine einfache α-Helix, in gelb, in den Käfig des Proteins modelliert."
"Foto: Max-Planck-Institut für Biochemie "

In der im Kristall eingefrorenen Struktur konnten die Max-Planck-Wissenschaftler den "heilenden" Chaperon-Zustand beobachten. Chaperone besitzen einige typische Eigenschaften, die mit ihrer Funktion zusammenhängen, ungefaltete, meist hydrophobe, also wasserabweisende Segmente von Proteinen zu erkennen. Diese charakteristischen Merkmale lassen sich auch in der DegP-Struktur erkennen (Abb. 2). Die Innenwände des DegP-Käfigs entsprechen flexiblen, hydrophoben Bindungsplattformen, die ähnlich wie Kondensatorplatten angeordnet sind. Der Abstand zwischen diesen Platten schränkt die Größe der gebundenen Substrate stark ein und verhindert auf diese Weise, dass korrekt gefaltete Proteine in die Werkstatt von DegP gelangen.

Tim Clausen, Leiter des Martinsrieder Forschungsteams, bemerkt: "Unsere Untersuchungen haben ergeben, dass es sich bei dem Proteinkomplex DegP um ein völlig neuartiges Chaperon-Protease-System handelt, das universell verbreitet ist." Von besonderem Interesse sind dabei die menschlichen DegP (HtrA) Proteine, die sich ebenfalls um die Beseitigung gestresster Proteine kümmern. Diese Aufräumkommandos spielen bei einer Vielzahl neurodegenerativer Krankheiten, wie z.B. der Alzheimerschen Krankheit, eine entscheidende Rolle. Die am Beispiel des Bakteriums E. coli entschlüsselte Proteinstruktur liefert Hinweise, wie diese Aufräumkommandos gesteuert werden, und eröffnet damit neue Ansätze für die Therapie dieser Krankheiten. Clausen weiter: "Daneben kann die dreidimensionale Struktur auch als Schablone für das Design spezieller Pharmaka dienen. Solche Pharmaka könnten gezielt die reparierende oder verschrottende Funktion von DegP beeinflussen und auf diese Weise sowohl einem unkontrollierten Proteinabbau als auch einer übermäßigen Proteinaggregation entgegenwirken."

"Die PDZ-Domänen, sozusagen die "Türsteher" des DegP-Komplexes, schwingen umher, um gestresste Proteine einzufangen und diese anschließend in den DegP-Käfig abzuliefern. "
"Foto: Max-Planck-Institut für Biochemie "

Animation (AVI, 4,4MB):

Dr. Tim Clausen | Presseinformation

Weitere Berichte zu: Chaperon DegP DegP-Käfig Käfig PDZ-Domänen Protease Protein Temperatur Werkstatt Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinaggregation: Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant
21.08.2019 | Heinrich-Heine-Universität Düsseldorf

nachricht Die Reise der Pollen
21.08.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biomarker verraten Gesundheit im Alter

21.08.2019 | Biowissenschaften Chemie

Struktur und Ort von Stoffwechselprodukten gleichzeitig sichtbar machen

21.08.2019 | Biowissenschaften Chemie

Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems

21.08.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics