Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanodiamanten als neue Elektronenquelle

14.06.2007
Gießener Chemiker liefern Nanodiamanten für internationales Projekt - Veröffentlichung in SCIENCE

Ein amerikanisch-deutsches Team unter maßgeblicher Beteiligung der Gießener Arbeitsgruppe des Chemikers Prof. Peter R. Schreiner berichtet in der jüngsten Ausgabe der wissenschaftlichen Zeitschrift SCIENCE (Band 316, 2007, 8. Juni 2007) über eine ungewöhnliche Beobachtung: Geordnete Schichten aus winzigen diamantartigen Kohlenstoffclustern (Diamantoide), die in Gießen gezielt synthetisiert wurden, liefern bei Bestrahlung in ungewöhnlich großer Ausbeute Elektronen mit nahezu gleicher Energie. Die Nutzung dieses Effektes könnte die Konstruktion von Elektronenquellen für Elektronenmikroskope oder Flachbildschirme erheblich beeinflussen.

Seit der Entdeckung durch amerikanische Ölfirmen (Mobil Oil und Chevron), dass kleine diamantartige Moleküle in zuvor unbekannten Mengen in Rohöl vorkommen, arbeiten Chemiker rund um den Erdball verstärkt an Strategien zur Nutzung und Modifikation dieser sehr stabilen und wenig reaktiven Kohlenstoffbausteine. Prof. Schreiner (Institut für Organische Chemie / Fachbereich 08 - Biologie und Chemie) gehört zu den Pionieren auf diesem Gebiet und hat bereits früh Arbeiten zur gezielten Funktionalisierung von Nanodiamanten (Adamantan, Tetramantan, etc.) publiziert.

In der vorliegenden Arbeit, die in Kooperation mit physikalischen Arbeitsgruppen in Stanford, Berkeley und dem Lawrence Livermore Laboratorium (alle USA) entstand, werden nun erstmals speziell präparierte Nanodiamanten dicht gepackt auf einer Gold- oder Silberunterlage so angeordnet, dass eine neue Oberfläche mit ganz besonderen elektronischen Eigenschaften entsteht. Darunter fällt die gegenwärtige Beobachtung einer "negativen elektronischen Affinität" (NEA), die Teil der Erklärung der besonders scharfen Energieverteilung der ausgesandten Photoelektronen ist.

Besonders faszinierend ist das weitergehende Potenzial der vorgestellten Schichten: Nanodiamanten lassen sich chemisch vielfältig modifizieren und werden daher wahrscheinlich noch zu einer ganzen Reihe von aussichtsreichen Materialentwicklungen führen.

Kontakt:
Prof. Peter R. Schreiner
Institut für Organische Chemie
Heinrich-Buff-Ring 58
35392 Gießen
Telefon 0641-34300/1
Fax 99-34309
E-Mail: prs@org.chemie.uni-giessen.de

Charlotte Brückner-Ihl | idw
Weitere Informationen:
http://www.chemie.uni-giessen.de/home/org_chem/

Weitere Berichte zu: Beobachtung Chemiker Nanodiamanten Schicht Science

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics