Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einsicht in die biologische Musterbildung

02.11.2006
Freiburger Wissenschaftler entdecken Proteine für die räumliche Anlage von Haarfollikeln

Entwicklungsbiologie beschäftigt sich mit der Frage, wie sich die Vielfalt und Komplexität der Erscheinungsformen in der belebten Natur aus einfachen embryonalen Strukturen bilden.

Freiburger Wissenschaftler haben jetzt erstmalig am Beispiel der Haarbildung bei Mäusen Proteine identifiziert, die die räumliche Entstehung eines biologischen Musters kontrollieren. Ein mathematisches Modell erklärt die Dynamik der Haarbildung. Ihre Ergebnisse haben die Forschergruppen in der aktuellen Online-Ausgabe des Wissenschaftsjournals Science veröffentlicht.

Eine wohlgeordnete Abfolge molekularer Prozesse während der Reifung der Haut führt zur Entstehung verschiedener Strukturen der Oberhaut, zu denen auch die Haarfollikel von Säugetieren zählen. Ein besonderes Merkmal dieser Anlagen ist, dass sie eine charakteristische räumliche Verteilung und Dichte aufweisen. Eine herausragende Rolle unter den an der Induktion und Heranreifung der Follikel beteiligten Substanzen spielen bestimmte Signalmoleküle, die die Wissenschaftler jetzt nicht nur nachweisen, sondern auch in ein mathematisches Modell einfließen lassen konnten.

Theoretische Physiker und Mathematiker der Universität Freiburg um die Forschergruppe von Professor Dr. Jens Timmer in Zusammenarbeit mit Biologen vom Max-Planck Institut für Immunbiologie in Freiburg haben jetzt erstmalig Beweise für eine in den 50er Jahren von dem englischen Mathematiker Alan Turing entwickelte Hypothese für Musterbildung gefunden und Substanzen identifiziert, die die Verteilung von Haarfollikeln von Mäusen bestimmen. Durch einen systembiologischen Ansatz, der experimentelle Ergebnisse mit mathematischen Modellen und Computersimulationen verknüpft, konnten die Wissenschaftler zeigen, dass bestimmte Proteine die räumliche Anordnung von Haarfollikeln maßgeblich kontrollieren und den theoretischen Anforderungen der Turing-Hypothese der Musterbildung genügen. Gemäß den Vorhersagen des mathematischen Modells ändern sich die Dichte sowie die Anordnung von Haarfollikeln bei verstärkter oder verminderter Konzentration der beteiligten Substanzen.

Neben ihrer grundlegenden Bedeutung für das Verständnis biologischer Musterbildung legen diese Erkenntnisse das Fundament, um den Prozess der Haarbildung im Detail aufzuklären. Im Hinblick auf die generelle Rolle solcher Signale bei der Entstehung von Oberhaut-Strukturen könnte der aktuellen Studie auf lange Sicht eine therapeutische Bedeutung zum Beispiel für die In-Vitro-Herstellung vollwertiger Haut zu Transplantationszwecken zukommen.

Kontakt:

Prof. Dr. Jens Timmer
Physikalisches Institut der
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Straße 3
79104 Freiburg
Tel.: 0761 203 5829
E-mail: jeti@fdm.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Berichte zu: Haarbildung Haarfollikeln Musterbildung Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein neues Mittel gegen Zöliakie
24.09.2018 | Technische Universität Wien

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Innovative Technologien für den Weltraumeinsatz – DFKI Robotics Innovation Center auf dem IAC 2018

24.09.2018 | Messenachrichten

Forscher untersuchten Wechselwirkungen in künstlichen Systemen

24.09.2018 | Physik Astronomie

19"-Rangierverteiler zur effizienten LWL-Datenübertragung

24.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics