Neue Einsicht in die biologische Musterbildung

Entwicklungsbiologie beschäftigt sich mit der Frage, wie sich die Vielfalt und Komplexität der Erscheinungsformen in der belebten Natur aus einfachen embryonalen Strukturen bilden.

Freiburger Wissenschaftler haben jetzt erstmalig am Beispiel der Haarbildung bei Mäusen Proteine identifiziert, die die räumliche Entstehung eines biologischen Musters kontrollieren. Ein mathematisches Modell erklärt die Dynamik der Haarbildung. Ihre Ergebnisse haben die Forschergruppen in der aktuellen Online-Ausgabe des Wissenschaftsjournals Science veröffentlicht.

Eine wohlgeordnete Abfolge molekularer Prozesse während der Reifung der Haut führt zur Entstehung verschiedener Strukturen der Oberhaut, zu denen auch die Haarfollikel von Säugetieren zählen. Ein besonderes Merkmal dieser Anlagen ist, dass sie eine charakteristische räumliche Verteilung und Dichte aufweisen. Eine herausragende Rolle unter den an der Induktion und Heranreifung der Follikel beteiligten Substanzen spielen bestimmte Signalmoleküle, die die Wissenschaftler jetzt nicht nur nachweisen, sondern auch in ein mathematisches Modell einfließen lassen konnten.

Theoretische Physiker und Mathematiker der Universität Freiburg um die Forschergruppe von Professor Dr. Jens Timmer in Zusammenarbeit mit Biologen vom Max-Planck Institut für Immunbiologie in Freiburg haben jetzt erstmalig Beweise für eine in den 50er Jahren von dem englischen Mathematiker Alan Turing entwickelte Hypothese für Musterbildung gefunden und Substanzen identifiziert, die die Verteilung von Haarfollikeln von Mäusen bestimmen. Durch einen systembiologischen Ansatz, der experimentelle Ergebnisse mit mathematischen Modellen und Computersimulationen verknüpft, konnten die Wissenschaftler zeigen, dass bestimmte Proteine die räumliche Anordnung von Haarfollikeln maßgeblich kontrollieren und den theoretischen Anforderungen der Turing-Hypothese der Musterbildung genügen. Gemäß den Vorhersagen des mathematischen Modells ändern sich die Dichte sowie die Anordnung von Haarfollikeln bei verstärkter oder verminderter Konzentration der beteiligten Substanzen.

Neben ihrer grundlegenden Bedeutung für das Verständnis biologischer Musterbildung legen diese Erkenntnisse das Fundament, um den Prozess der Haarbildung im Detail aufzuklären. Im Hinblick auf die generelle Rolle solcher Signale bei der Entstehung von Oberhaut-Strukturen könnte der aktuellen Studie auf lange Sicht eine therapeutische Bedeutung zum Beispiel für die In-Vitro-Herstellung vollwertiger Haut zu Transplantationszwecken zukommen.

Kontakt:

Prof. Dr. Jens Timmer
Physikalisches Institut der
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Straße 3
79104 Freiburg
Tel.: 0761 203 5829
E-mail: jeti@fdm.uni-freiburg.de

Media Contact

Rudolf-Werner Dreier idw

Weitere Informationen:

http://www.uni-freiburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer