Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Billion Computer in einem Tropfen Wasser

23.11.2001


Wissenschaftler bauen aus biologischen Molekülen einen winzigen Computer

Einer Gruppe von Wissenschaftlern unter der Leitung von Prof. Ehud Shapiro am Weizmann Institut gelang es, aus biologischen Molekülen einen winzigen programmierbaren Computer in einem Reagenzglas herzustellen. Wie in der heutigen Ausgabe der Zeitschrift Nature berichtet wird, ist dieser biologische Nanocomputer so klein, dass eine Billion (1.000.000.000.000) solcher Computer nebeneinander in einem Tropfen von einem Zehntel Milliliter wässriger Lösung bei Zimmertemperatur Platz finden und parallel rechnen können. Zusammen können diese Computer eine Milliarde Operationen pro Sekunde ausführen, mit einer Genauigkeit von über 99,8 Prozent pro Operation, wobei sie nur ein Milliardstel Watt Energie benötigen. Die Studie könnte den Weg zu Computern weisen, die interaktiv mit der biochemischen Umgebung innerhalb des menschlichen Körpers arbeiten und damit weitreichende biologische und pharmazeutische Anwendungsmöglichkeiten erschließen.

Eingabe, Ausgabe und ’Programm’ des Computers bestehen aus DNS-Molekülen. Als ’Hardware’ benutzt der Computer zwei natürlich auftretende Enzyme, die die DNS manipulieren. Werden diese in einer Lösung vermischt, erzeugen die Software- und Hardware-Moleküle harmonisch, ausgehend vom Eingabe-Molekül, ein Ausgabe-Molekül und bilden damit eine einfache mathematische Rechenmaschine, bekannt als endlicher Automat. Dieser Nanocomputer kann für die Lösung einfacher Aufgaben programmiert werden, je nachdem, welche Programm-Moleküle der Lösung beigemischt werden. Er kann zum Beispiel herausfinden, ob im Eingabe-Molekül eine Liste aus einer ununterbrochenen Reihe von Nullen besteht, der eine ununterbrochene Reihe von Einsen folgt.

’Die lebendige Zelle enthält unglaubliche molekulare Maschinen, und die Art, wie sie auf die molekularen Informationsträger wie DNS und RNS einwirken, ist grundsätzlich der Berechnung mit Computern sehr ähnlich,’ sagt Prof. Shapiro. ’Da wir solche Maschinen bislang nicht wirksam verändern bzw. neue schaffen können, besteht der Trick darin, natürlich existierende Maschinen zu finden, die in der Kombination zur Ausführung von Rechenfunktionen gebracht werden können.’

Shapiro übertrug genau diese Aufgabe seinem Doktoranden Yaakov Benenson. Er sollte die molekulare Umsetzung einer der einfachsten mathematischen Rechenmaschinen finden, eines endlichen Automaten, der errechnet, ob eine Liste von Nullen und Einsen eine gerade Anzahl von Einsen enthält. Bei der von Benenson ersonnenen Lösung spielen DNS-Moleküle und zwei natürlich vorkommende, DNS-manipulierende Enzyme eine zentrale Rolle: Fok-I und Ligase. Vergleichbar mit einem biologischen Textredakteur funktioniert Fok-I als chemische Schere, die die DNS nach einem spezifischen Muster aufspaltet, während das Enzym Ligase DNS-Moleküle zusammenschweißt.

Im Verlauf der Laborarbeit wurde Shapiro und seinem Team klar, dass sie mit derselben Methode alle acht möglichen Operationsregeln zur Steuerung eines binären, mit zwei Symbolen operierenden endlichen Automaten umsetzen können. Mit den Programm-Molekülen, zusammen mit zwei ’Ausgabe-Anzeige’-Molekülen, die das Ergebnis der Berechnung sichtbar machen, können insgesamt 765 Software-Programme erzeugt werden. Einige dieser Programme wurden im Labor getestet, darunter wie oben erwähnt der ’Gerade-Einser-Prüfer’ (das Prüfprogramm für die Frage: Liegt eine Gerade Anzahl von Einsen vor?), und der ’Nullen vor Einser-Test’ (für die Frage: Kommen die Nullen vor den Einsen?), sowie Programme welche prüfen, ob eine Liste von Nullen und Einsen mindestens (oder höchstens) eine Null enthält, und ob die Reihe sowohl mit einer Null beginnt als auch mit einer Eins endet.

Der von Shapiros Team gebaute Nanocomputer benutzt die vier DNS-Basen A, T, C und G, um sowohl die Eingabe-Daten als auch die Regeln für das Computerprogramm festzuschreiben. Sowohl Eingabe- als auch Programm-Moleküle sind verfügen über zwei unterschiedlich lange DNS-Stränge. Das überstehende Stück des längeren der beiden Stränge nennt man ’klebriges Ende’ (sticky end). Zwei Moleküle mit komplementären klebrigen Enden können sich vorübergehend miteinander verbinden (diesen Vorgang nennt man Hybridisierung), was der DNS-Ligase erlaubt, diese dauerhaft zu einem Molekül zu verschweißen. Das klebrige Ende des Eingabe-Moleküls enthält die Information für das aktuelle Symbol und den aktuellen Berechnungszustand, während das klebrige Ende jedes ’Programm’-Moleküls so entworfen ist, dass eine bestimmte Zustands-Symbol-Kombination erkennbar ist. Ein binärer, mit zwei Symbolen operierender Automat hat vier solcher Kombinationen. Für jede Kombination hat der Nanocomputer zwei mögliche nächste Schritte: entweder er verbleibt in demselben Zustand, oder er wechselt zum anderen Zustand, d.h. acht Programm-Moleküle decken alle Möglichkeiten ab.

In jedem Verarbeitungsschritt hybridisiert das Eingabe-Molekül mit einem Programm-Molekül, welches ein komplementäres klebriges Ende hat, und ermöglicht der Ligase, die beiden mit Hilfe von zwei ATP-Molekülen als Energie zu verschweißen. Nun kommt Fok-I ins Spiel. Es spürt eine besondere Stelle im Programm-Molekül auf, die sogenannte Erkennungsstelle (recognition site). Das Enzym spaltet das Eingabe-Molekül an einer Stelle, die vom Programm-Molekül bestimmt wird, und setzt dadurch ein klebriges Ende frei, das das nächste Eingabe-Symbol und den nächsten Berechnungszustand enthält. Sobald das letzte Eingabe-Symbol verarbeitet ist, wird ein klebriges Ende mit dem endgültigen Berechnungsstatus frei und kann - wiederum durch Hybridisierung und Verschweißung - von einem der zwei ’Ausgabe-Anzeige’-Molekülen gelesen werden. Das nun entstehende Molekül, das das Ergebnis der Berechnung anzeigt, wird für das menschliche Auge durch Gel-Elektrophorese sichtbar gemacht.

Der entstandene Nanocomputer ist zu einfach, um für direkte Anwendungen nützlich zu sein, doch er könnte den Weg für Computer bahnen, die eines Tages im menschlichen Körper agieren, mit weitreichenden biologischen und pharmazeutischen Applikationen. ’Solch ein Computer der Zukunft könnte zum Beispiel eine anormale biochemische Veränderung im Körper aufspüren und entscheiden, wie man sie korrigiert, indem er den richtigen Wirkstoff herstellt und freisetzt’, sagt Prof. Zvi Livneh, ein DNS-Experte von der Abteilung Biologische Chemie des Instituts, der an diesem Projekt beteiligt war.

Andere Beiträge zu dieser Studie kamen von Dr. Tamar Paz-Elizur und Dr. Rivka Adar von der Abteilung Biologische Chemie des Weizmann-Instituts und von Prof. Ehud Keinan von der Abteilung Chemie am Technion/Israel Institute of Technology und der Abteilung für Molekularbiologie am Scripps Research Institute.

Über Prof. Shapiro

Prof. Shapiro promovierte im Jahr 1980 an der Universität Yale und kam im Anschluss daran zum Weizmann Institut. In den achtziger Jahren war er am Japanese Fifth Generation Computer Project beteiligt und veröffentlichte zahlreiche wissenschaftliche Artikel auf dem Gebiet der nebenläufigen Programmierungssprachen.

In den frühen neunziger Jahren führte die innovative Forschungsarbeit Shapiros auf dem Gebiet der Programmiersprachen zur Gründung von Ubique, einer Firma, die interaktive Online-Umgebungen entwickelt. Shapiro verließ das Weizmann-Institut, um sich dem Unternehmen zu widmen, und als die Firma von America Online übernommen wurde, übersiedelte er nach USA, um die Integration der Technologie von Ubique in das Internet-Dienstleistungsangebot von America Online zu unterstützen. Als America Online Ubique 1998 an Lotus/IBM verkaufte, kehrte Shapiro an seine Forschungsstelle im Weizmann Institut zurück. Er richtete das Labor für biologische Nanocomputer in der Abteilung Biologische Chemie ein, in dem auch die Forschung durchgeführt wurde, von der die Zeitschrift Nature berichtet.

Shapiros Entwicklung eines universellen molekularen Computers, der zur Schaffung des in der Zeitschrift Nature beschriebenen molekularen Automaten inspirierte, erhielt kürzlich das US-Patent 6.266.569.

Anmerkung für Journalisten: Eine Video-Präsentation in Beta-Format, das die Berechnung des von Prof. Shapiros Team entwickelten molekularen Computers veranschaulicht, ist auf Anfrage erhältlich. 
Ehud.Shapiro@weizman.ac.il

Professor Ehud Shapiros Forschung wird von der Ebner-Familienstiftung für biomedizinische Forschung und von der Samuel-R.-Dweck-Stiftung unterstützt.

Debbie Weiss | idw

Weitere Berichte zu: Automat Eingabe-Molekül Enzym Molekül Nanocomputer Programm-Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Darmbakterien das Herzinfarktrisiko beeinflussen
10.12.2018 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Methode verpasst Mikroskop einen Auflösungsschub

10.12.2018 | Physik Astronomie

Diabetes Typ 1 - Studien zeigen: Insulinpumpen wirken sich positiv auf Blutzuckerwerte

10.12.2018 | Studien Analysen

Untersuchung von Proteinen in einer Graphen-Flüssigkeitszelle führt zu höherer Strahlenverträglichkeit

10.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics