Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch Pflanzen haben eine doppelte Abwehrkette

18.11.2005


Kölner Max-Planck-Forschern weisen nach, dass die dauerhafte Resistenz von Pflanzen gegen Pilzparasiten auf einem mehrstufigen Abwehrmechanismus beruht


Die Modellpflanze Arabidopsis thaliana wehrt sich gegen das Eindringen eines Parasiten. In einer Mutante von Arabidopsis, in der das Gen für das PEN2-Protein ausgeschaltet ist (rechte Pflanze, links im Vergleich der Wildtyp), dringt der Gerstenmehltau deutlich häufiger in die Epidermiszellen ein als bei einem Wildtyp. Die angegriffene Zelle reagiert schließlich mit dem Zelltod auf den Eindringling. Die damit einhergehende weiße Fluoreszenz kann durch UV-Licht sichtbar gemacht werden. Für die rote Hintergrundfärbung der Blätter ist die Eigenfluoreszenz des Chlorophylls verantwortlich. Bild: Max-Planck-Institut für Züchtungsforschung/Volker Lipka



Pflanzen sind in ihrer Umwelt vielen verschiedenen Krankheitserregern ausgesetzt. Doch nur sehr wenige davon sind in der Lage, eine Pflanzenart zu befallen und sie "krank zu machen". Wenn eine Pflanze von einem bestimmten Krankheitserreger nicht befallen wird, ist sie ihm gegenüber resistent - also kein Wirt. Diese dauerhafte Spielart pflanzlicher Immunität gegenüber Parasiten nennt man Nichtwirts-Resistenz. Obwohl diese in der Natur die überwiegende Zahl aller "Angriffe" durch Parasiten beendet, ist sie bisher nur wenig erforscht. Forscher des Max-Planck-Instituts für Züchtungsforschung in Köln um Volker Lipka, Jan Dittgen und Paul Schulze-Lefert haben jetzt in Zusammenarbeit mit Kollegen der Carnegie Institution, USA, die molekularen Komponenten der Nichtwirts-Resistenz aufgedeckt und beschreiben diesen molekularen Abwehrmechanismus in der aktuellen Ausgabe der Fachzeitschrift "Science" (Science, 18. November 2005). Ihre Erkenntnisse lassen gewisse Parallelen im Immunsystem von Pflanzen und Tieren erkennen und könnten für die Entwicklung neuer "grüner" Fungizide von essentieller Bedeutung sein.



Den Max-Planck-Forschern ist es gelungen, durch die Isolierung von Arabidopsis-Mutanten, die partiell anfällig gegenüber Gerste-Mehltaupilzen sind, die so genannten PEN (penetration)-Gene als wichtige Komponenten der Nichtwirts-Resistenz zu identifizieren. Sind diese defekt bzw. fehlt das dadurch kodierte Protein in der Pflanzenzelle, kann der Pilz weitaus häufiger in Blattepidermis-Zellen eindringen. Deshalb gingen die Wissenschaftler in ihren Experimenten speziell der Frage nach, welche Funktion das PEN2-Protein nun genau bei der Abwehr von Krankheitserregern hat.

PEN2 ist ein Enzym und befindet sich in der Membran von so genannten Peroxisomen - räumlich abgetrennten Zellkompartimenten, in denen oftmals Stoffwechselreaktionen ablaufen, die für den Organismus außerhalb dieser Gefäße gefährlich wären. Versucht nun ein Pilz in eine Pflanzenzelle einzudringen, werden solche Peroxisomen mit dem angehefteten PEN2-Protein gezielt zur Angriffsstelle geleitet. Durch die enzymatische Aktivität des PEN2-Enzyms, einer Glykosylhydrolase, können ein oder mehrere Zuckermoleküle von einem anderen Zellbaustein abgespalten werden. Die dadurch freigesetzte Substanz hat wahrscheinlich eine fungizide, also den Pilz-Erreger tötende Wirkung.

Umgekehrt konnten die Forscher beobachten, dass bei einem Ausfall von PEN2 die Pflanzen nicht nur anfälliger gegen Mehltaupilze sondern auch gegen andere Pflanzenschädlinge wurden, etwa gegen den Erreger der Kraut- und Knollenfäule der Kartoffel. Dies zeigt, dass es sich bei PEN2 um einen Baustein des pflanzlichen Immunsystems mit einem breiten Wirkungsspektrum handelt.

Fällt PEN2 aus, ist die Pflanze jedoch noch nicht vollständig hilflos gegen Pilzkrankheiten - erst muss noch eine zweite Abwehrkette überwunden werden. Dazu unternimmt die Pflanze einen drastischen Schritt: Die angegriffene Zelle stirbt mitsamt dem Angreifer, wodurch das benachbarte Pflanzengewebe vor einer Infektion geschützt werden soll.

Bei dieser tödlichen Abwehr spielen ganz andere Proteine eine zentrale Rolle, nämlich EDS1, PAD4 und SAG101. Diese waren den Forschern bereits bei anderen Spielarten des pflanzlichen Immunsystems aufgefallen, bei der die Pflanze durch Immunrezeptoren auf der Zelloberfläche und im Zellinneren molekulare Merkmale identifiziert, die nur in Parasiten vorhanden sein können. Erst wenn auch dieser zweite Schutzmechanismus ausfällt, kann die Pflanze von den ursprünglich nicht-virulenten Mehltaupilzen schließlich besiedelt werden.

Mit ihren Forschungsergebnisse haben die Max-Planck-Forscher nun nachgewiesen, dass die Nichtwirts-Resistenz von Pflanzen aus einem mindestens zweistufigen Verteidigungssystem besteht. Deren Stufen entscheiden, ob eine Pflanze für eine Krankheit anfällig ist oder nicht. Dabei könnte die Redundanz der Abwehrschichten und das breite Wirkungsspektrum von PEN2 erklären, warum die Nichtwirts-Resistenz in der Natur ein dauerhafter und breit wirkender Resistenzmechanismus ist. Fällt nämlich ein Baustein einer Abwehrschicht aus, wird seine Funktion durch Komponenten der nächsten Abwehrreihe übernommen.

Hingegen hatte man bisher angenommen, dass die Nichtwirts-Resistenz eher auf "passiven" Mechanismen beruht, wie die Bauart der Zellwand, giftigen Stoffen auf der Pflanzenoberfläche oder fehlenden molekularen Angriffspunkten für Pathogene. Hingegen konnten die Kölner Wissenschaftler nun zeigen, dass aktive Immunantworten einen entscheidenden Beitrag zur Nichtwirts-Resistenz von Pflanzen leisten, wie etwa der beobachtete Transport von PEN2 zur Infektionsstelle.

In weiteren Untersuchungen wollen die Forscher nun jene Stoffe identifizieren, die durch die PEN2-Aktivität an der Infektionsstelle gebildet werden. Es ist zu vermuten, dass diese Stoffe neuartige "grüne Fungizide" mit breitem Wirkungsspektrum zur Bekämpfung von Pflanzenkrankheiten liefern könnten.

Weitere Informationen erhalten Sie von:

Prof. Dr. Paul Schulze-Lefert, Abteilung Molekulare Phytopathologie
Max-Planck-Institut für Züchtungsforschung, Köln
Tel.: 0221 5062-350
Fax: 0221 5062-353
E-Mail: schlef@mpiz-koeln.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics