Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum organischen Chip

18.10.2005


Die interne Verdrillung des freien Rubren-Moleküls (links) muss vor dem Einbau in ein Kristallgitter (rechts) unter Verrichtung von Arbeit (Diagramm oben rechts) aufgehoben werden.


Auf dem Weg zum organischen Chip
RUB-Chemiker optimieren organische Elektronik


Physical Review Letters: Aufwachsbedingungen für Moleküle


Eine Zukunftsvision wird konkret: Chemiker der Ruhr-Universität Bochum sind dem Ziel einen Schritt näher gekommen, mit organischen Materialien elektronische Schaltkreise herzustellen. Bochum Forscher um Prof. Dr. Christof Wöll (Physikalische Chemie) haben die Aufwachsbedingungen bestimmter, weicher Moleküle - der "Rubren-Moleküle" - so optimiert, dass diese auf einen Festkörper (zum Beispiel ein Transistorbauteil) aufgedampft werden können, ohne sich zu verformen. Über ihre Ergebnisse berichten die Wissenschaftler in der aktuellen Ausgabe von "Physical Review Letters", die heute erscheint.


Die Zukunftsvision

Momentan entwickelt sich die organische Elektronik rasant: Das Hauptinteresse beruht auf der Aussicht, mit organischen Materialien elektronische Schaltkreise herstellen zu können, die beispielsweise als Identifikationsetiketten an Produkten (z. B. einzelverpackten Nahrungsmitteln) aufgebracht werden können. Da organische Materialien etwa als Polymer sehr flexibel und gut zu verarbeiten sind, sollen sich diese Schaltungen einfach aufdrucken lassen. Ein auf den Joghurtbecher einfach aufgestempelter "Chip" meldet dann zum Beispiel der Supermarktkasse direkt seinen Preis und spart so dem Kunden wertvolle Zeit. Zu Hause erfasst dann der "intelligente" Kühlschrank die Daten des Joghurtbechers und empfiehlt dem Kunden rechtzeitig vor Erreichen des Verfallsdatums, diesen zu verzehren.

Das Problem

Diese Vision beginnt momentan konkreter zu werden, allerdings treten bei der Realisierung elektronischer Schaltkreise, in denen organische Materialien als Halbleiter dienen, immer wieder unerwartete Probleme auf. Zum Beispiel lassen sich aus hoch geordneten Kristallen des organische Moleküls "Rubrene" zwar sehr leistungsfähige Transistoren (so genannte OFETs, organische Feldeffekt-Transistoren) herstellen - die für eine Massenproduktion erforderliche Herstellung durch Aufdampfen auf Substrate scheiterte bisher aber. Durch systematische Untersuchungen des Aufwachsverhaltens - unter anderem unter Einsatz von "Synchrotronstrahlung" des Elektronen-Synchrotrons BESSY II in Berlin - konnten die Bochumer Forscher nun die Gründe für diese Probleme identifizieren.

Die Lösung

Die Ursache liegt in der Natur der weichen molekularen Materialien: Die Rubren-Moleküle sind so flexibel, dass das freie Molekül beim Einlagern in den Festkörper eine andere Geometrie ("Konformation") annimmt. Beim Aufdampfen "landen" die Moleküle auf dem Substrat und können zunächst nicht kristallisieren, weil ihnen die richtige Umgebung fehlt. Dadurch entstehen sehr viele Defekte, die die Beweglichkeit der Ladungsträger in diesem organischen Halbleiter behindern und damit letztlich zu der Fehlfunktion des mit aufgedampften Rubren hergestellten Transistors führen. Basierend auf ihren Ergebnissen konnten die RUB-Forscher bereits ein alternatives Aufwachsverfahren entwickeln, das sie zurzeit testen.

Weitere Informationen

Prof. Dr. Christof Wöll, Lehrstuhl für Physikalische Chemie I, Fakultät für Chemie der RUB, Tel. 0234/32-25529, E-Mail: woell@pc.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.pc.ruhr-uni-bochum.de

Weitere Berichte zu: Aufdampfen Molekül Physikalisch Schaltkreis

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics