Magnete im Gleichtakt

Internationale Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe erreicht erstmals Bose-Einstein-Kondensation im Festkörper

Eine Kondensation von magnetischen Anregungen in einen makroskopischen Quantenzustand wurde von einer internationalen Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal in einem Festkörper nachgewiesen.

Weltweit findet eine intensive Suche nach dem Phänomen der Bose-Einstein-Kondensation (BEK) im Festkörper statt, deren potentielle Existenz in zahlreichen theoretischen Arbeiten vorhergesagt wird. Das Faszinierende an diesem Effekt ist, dass alle „Teilchen“ (typischer Weise 1023) einen einheitlichen makroskopischen Quantenzustand annehmen, also mit einer einzigen Wellenfunktion beschrieben werden können und darüber hinaus alle Teilchen im Gleichtakt schwingen.

Die Bose-Einstein-Kondensation tritt bei Temperaturen knapp oberhalb des absoluten Temperaturnullpunkts auf. Das erste makroskopische Quantenphänomen, das mit der Bose-Einstein-Kondensation interpretiert werden konnte, war im Jahr 1934 die Suprafluidität eines Heliumisotops. Die experimentelle Realisierung der Bose-Einstein-Kondensation von schwereren Atomen gelang erst 1995, für die der deutsche Physiker Wolfgang Ketterle zusammen mit zwei amerikanischen Kollegen 2001 den Physik-Nobelpreis erhielt. Vorausetzung dazu sind sehr tiefe Temperaturen und eine relativ geringe Anzahl Atome pro cm3 (typischerweise 1014).

Nun ist es Dresdner Wissenschaftlern am Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal gelungen, zweifelsfrei den Nachweis für eine Bose-Einstein-Kondensation von magnetischen Anregungen in einem Festkörper zu erbringen. Entscheidend für den Durchbruch der Dresdner Gruppe war die erfolgreiche Kombination von extrem tiefen Temperaturen und hohen Magnetfeldern. Hierbei kommt dem Magnetfeld, das mehr als das hunderttausendfache der Stärke des Erdmagnetfeldes beträgt, besondere Bedeutung zu. Es erlaubt die Anzahl der kondensierten Teilchen – in diesem Fall magnetische Elementaranregungen, so genannten Magnonen – exakt einzustellen. Untersucht wurden die magnetischen Eigenschaften des Isolators Cs2CuCl4 bis hinab zu etwa drei hundertstel Grad über dem absoluten Temperaturnullpunkt. Die Kupferatome sind in dieser Substanz magnetisch und bilden aufgrund ihrer räumlichen Anordnung im Festkörper Ebenen aus. Diese Ebenen mit ihren speziellen Eigenschaften machen die Verbindung zu einem aussichtsreichen Kandidaten für eine mögliche Bose-Einstein-Kondensation. Die präzise Messung der spezifischen Wärme bei abnehmender Temperatur, aber konstantem Magnetfeld (bis zu 12 Tesla), lieferte die Temperaturwerte, unterhalb derer die Substanz in einen magnetisch geordneten Zustand übergeht. Diese Ordnungstemperatur geht in einer für die Bose-Einstein-Kondensation charakteristischen Weise gegen den Temperaturnullpunkt, wenn das Magnetfeld erhöht wird. Neben dieser Beobachtung zeigen die Experimente weitere Fakten, die für das Auftreten einer Bose-Einstein-Kondensation erfüllt sein müssen. Damit ist Cs2CuCl4 der erste Festkörper, in der alle theoretisch geforderten Bedingungen in hervorragender Weise im Experiment nachgewiesen wurden.

Media Contact

Dr. Andreas Trepte idw

Weitere Informationen:

http://www.mpg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartiges Material für nachhaltiges Bauen

Innovativer Werkstoff für eine energieeffiziente Architektur: Forschende des Karlsruher Instituts für Technologie (KIT) stellen in der aktuellen Ausgabe der Fachzeitschrift Nature Communications ein polymerbasiertes Material mit besonderen Eigenschaften vor. Das…

Neues Antibiotikum gegen Erreger der Flussblindheit und Lymphatischen Filariose

Prof. Achim Hoerauf, Direktor des Instituts für Medizinische Mikrobiologie, Immunologie und Parasitologie des Universitätsklinikums Bonn (UKB), und seinem Team ist es in Kollaboration mit der Abteilung Pharmazeutische Technologie und Biopharmazie…

Evolutionäre Genomik: Folgen biodiverser Fortpflanzungssysteme

Die Deutsche Forschungsgemeinschaft (DFG) fördert die Einrichtung eines neuen Graduiertenkollegs (GRK) in der Biologie an der Universität Göttingen. Das GRK mit dem Titel „Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems…

Partner & Förderer