Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Zugvögel auf "Nachtflug" schalten

24.05.2005


Oldenburger Forschergruppe um Dr. Henrik Mouritsen entdeckt ein Gehirnareal, das nur bei nachts fliegenden Singvögeln aktiv ist.



Zwei Mal pro Jahr machen sich Millionen von Zugvögeln auf den Weg in wärmere oder kältere Gefilde. Tausende von Kilometern legen sie zurück, und ihr Navigationssystem ist von einer faszinierenden Präzision. In der Dunkelheit weisen ein magnetischer Kompass und der Sternenhimmel den Zugvögeln den rechten Weg. Wie dieser Orientierungssinn im Einzelnen funktioniert, erforscht seit einigen Jahren die von der VolkswagenStiftung eingerichtete Nachwuchsgruppe um Dr. Henrik Mouritsen am Institut für Biologie und Umweltwissenschaften der Universität Oldenburg. Jetzt konnte das Forscherteam erstmals einen besonderen Gehirnbereich lokalisieren, der für das Nachtsehen bei nächtlich ziehenden Singvögeln zuständig ist. Diese als Cluster N bezeichnete Region wird aktiv, sobald die Vögel auf "Nachtflug" schalten. Bei geschlossenen Augen bleibt das Gehirnareal abgeschaltet.



Kooperationspartner bei diesen Studien war die Gruppe um Professor Erich Jarvis, Duke University, USA. Die Ergebnisse erscheinen am 7. Juni 2005 in der Zeitschrift PNAS - Proceedings of the National Academy of Sciences of the United States, in deren Online-Fassung sie ab heute abrufbar sind (www.pnas.org).

Erst im vergangenen Jahr hatte das Team von Mouritsen in Zusammenarbeit mit der Oldenburger Neurobiologiegruppe um Prof. Dr. Reto Weiler starke Hinweise darauf gefunden, dass die Zugvögel eine Art Magnetsensor beziehungsweise Kompass im Kopf haben, der in der Netzhaut der Augen lokalisiert ist. Zuvor war es ihnen gelungen, Cryptochrom-Moleküle in der Netzhaut zu identifizieren, die den Vögeln ermöglichen könnten, das Magnetfeld zu "sehen". Ihre Erkenntnisse über die Orientierung im Dunkeln mit Hilfe von Magnetsinn und Sternenhimmel führte sie zu der Hypothese, dass nächtliche Zugvögel ein spezialisiertes Nachtsicht-System besitzen müssen. Um diese Annahme zu prüfen, haben die Wissenschaftler die Genaktivitäten im Gehirn von nachtziehenden Singvögeln und nichtwandernden Singvögeln verglichen.

Für die Versuche wählten sie zwei entfernt verwandte Arten nachtwandernder Zugvögel aus - Rotkehlchen und Gartengrasmücken - und entsprechend zwei Arten von Nicht-Zugvögeln - Zebrafinken und Kanarienvögel. Die Tiere wurden im Zeitraum des normalen Vogelflugs (August bis Oktober und April bis Mai) in durchsichtige Käfige gesetzt, wo die Forscher ihr Verhalten genau beobachten konnten. Die Wissenschaftler simulierten den Tag-Nacht-Zyklus und sorgten dafür, dass die Vögel ansonsten nicht gestört wurden. Zu bestimmten Zeitpunkten am Tag oder in der Nacht wurden dann Genaktivitätsstudien an den Gehirnen der Tiere vorgenommen.

Gemessen wurde die Aktivität von zwei verschiedenen Genen, die angeschaltet werden, sobald Nervenzellen durch Reize stimuliert werden. Die Aktivität dieser Gene - ZENK und cfos - wurde mit Hilfe der In-situ-Hybridisierung bestimmt. Dabei wird die Boten-RNA nachgewiesen, die auf dem Weg vom Gen zum Protein gebildet wird und somit anzeigt, dass ein Gen angeschaltet ist.

Die Wissenschaftler entdeckten bei den nachtwandernden Singvögeln ein Gehirnareal, das nur nachts eine hohe Genaktivität aufwies. Dieser als Cluster N (N für Nacht-Aktivierung) bezeichnete Gehirnbereich war hingegen bei jenen Singvögeln, die nachts nicht wandern, nicht zu finden - und bei den Zugvögeln verschwand die Aktivität, wenn man ihnen "Augenklappen" aufsetzte. Diese Ergebnisse bestätigen nach Meinung der Oldenburger Wissenschaftler die Hypothese, dass die nachtwandernden Zugvögel einen spezifisch an den Nachtflug angepassten Gehirnbereich besitzen, der ihnen besseres Sehen und Navigieren im Dunkeln ermöglicht.

Cluster N umfasst fünf Regionen und liegt benachbart zum so genannten visuellen "Wulst": einer Gehirnregion, die die Informationen vom Auge verarbeitet. Mouritsen und sein Team vermuten nun, dass dieser neu entdeckte Gehirnbereich die visuellen Wahrnehmungen mit dem Magnetsinn sowie der Sternenorientierung koppelt und so für das präzise Navigationssystem der Vögel im Nachtflug zuständig ist.

Die VolkswagenStiftung fördert die Arbeiten von Dr. Henrik Mouritsen am Institut für Biologie und Umweltwissenschaften der Universität Oldenburg im Zuge der 2002 eingerichteten Nachwuchsgruppe "Animal navigation - a search for behavioural and physiological mechanisms" mit 1,24 Millionen Euro.

Kontakt:
VolkswagenStiftung
Presse- und Öffentlichkeitsarbeit
Dr. Christian Jung
Telefon: 05 11/83 81 - 380
E-Mail: jung@volkswagenstiftung.de

Weitere Auskünfte und Kontakt:
Universität Oldenburg
Dr. Henrik Mouritsen
Institut für Biologie und Umweltwissenschaften
Telefon: 04 41/798 - 30 81
E-Mail: henrik.mouritsen@uni-oldenburg.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de
http://www.volkswagenstiftung.de/presse-news/presse05/24052005.pdf.

Weitere Berichte zu: Gehirnbereich Gen Mouritsen Singvögeln Zugvögel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics