Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erleuchtetes Gehirn

06.07.2001


Wissenschaftlern am Heidelberger Max-Planck-Institut für medizinische Forschung gelingt direkte Beobachtung und Regulierung neuronaler Verschaltungen zwischen Gehirnzellen

Eine Wissenschaftlergruppe um Rolf Sprengel und Volker Mack am Max-Planck-Institut für medizinische Forschung in Heidelberg ist es gelungen, die synaptische Plastizität von Gehirnzellen im Hippocampus von Mäusen sichtbar zu machen und durch die Gabe von Antibiotika zu regulieren (Science, 29. Juni 2001). Dieser experimentelle Ansatz eröffnet neue Möglichkeiten, um die Kluft zwischen der Kenntnis molekularer Vorgänge in einzelnen Nervenzellen und dem Verständnis von Lern- und Gedächtnisleistungen des ganzen Gehirns zu überbrücken.

Die moderne Neurobiologie fragt heute nach den molekularen und zellulären Mechanismen, die unserem Gehirn seine so genannte Plastizität (griech.: plastokos = zum Formen geeignet) geben und es so anpassungsfähig machen. Diese Mechanismen bestimmen - entwicklungsabhängig - die Verknüpfung der Nervenzellen zu spezialisierten neuronalen Netzen, wie dem sensorischen oder dem visuellen System. Sie sind die Grundlage von Lern- und Gedächtnisvorgängen im Gehirn. Sie ermöglichen es, motorische, sensorische oder kognitive Störungen, wie sie zum Beispiel nach einem Schlaganfall eintreten, zu korrigieren.

Diese plastischen Veränderungen finden vorrangig an Synapsen statt, den Schaltstellen für die Kommunikation zwischen Nervenzellen. Eine Nervenzelle kann bis zu 50.000 derartige Strukturen ausbilden. Jede Synapse hat eine präsynaptische Komponente, vergleichbar einem Sender, und eine postsynaptische Struktur, ein Empfangsstation. Informationen werden von einer Nervenzelle zur anderen über die Ausschüttung von chemischen Botenstoffen (Neurotransmittern) weitergegeben. Diese Signalübertragung ist in vielen Nervenverknüpfungen (Synapsen) nicht statisch, sondern kann - abhängig von ihrem Gebrauch - optimiert werden, was man dann als ‚synaptische Plastizität’ bezeichnet. So kann die chemische Neurotransmission entweder dadurch verbessert werden, dass die sendende Nervenzelle eine größere Menge Botenstoff ausschüttet, oder durch eine größere Zahl von Empfängerstrukturen (Rezeptorkanäle) auf der nachgeschalteten Nervenzelle. Bei den molekularen Mechanismen, die der Erinnerung und dem Lernen zugrunde liegen, spielen durch Glutamat gesteuerte Ionenkanäle eine zentrale Rolle.

Den Wissenschaftlern aus dem Max-Planck-Institut für medizinische Forschung in Heidelberg ist es nun gelungen, in Mäusen einen wichtigen Glutamat-gesteuerten Ionenkanal gegen seine grünfluoreszierende Variante auszutauschen. Die Wissenschaftler stellten fest, dass der Ionenkanal auch mit dem eingebauten grünfluoreszierenden Protein (GFP) im zentralen Nervensystem der Mäuse einwandfrei arbeitete. Darüber hinaus fanden die Heidelberger Wissenschaftler einen einfachen Weg, um die Funktion dieses Ionenkanals zu regulieren - über die Zugabe des Antibiotikums Doxyzyclin im Trinkwasser (s. Abbildung, S. 3).

Damit haben die Heidelberger Wissenschaftler zwei wichtige Ergebnisse erreicht: Durch den Einbau des grünfluoreszierenden Proteins in den Ionenkanal können jetzt Lokalisierung, Funktion und die Interaktionen dieser Kanäle direkt beobachtet werden. Mit der Zugabe des Antibiotikums zum Trinkwasser haben sie zudem einen Weg gefunden, um eine der wichtigsten Eigenschaften neuronaler Verschaltungen im Hippocampus, die aktivitätsabhängige Optimierung der Reizweitergabe, regulieren zu können.

Mit vergleichenden Untersuchungen von Mäusen, die mit oder ohne das Antibiotikum Doxyzyclin aufgewachsen sind, wollen die Wissenschaftler in der nächsten Zeit herausfinden, bei welchen Lernvorgängen diese Form der synaptischen Plastizität in den verschiedenen Bereichen des Hippocampus eine Rolle spielt (vgl. dazu auch die Presse-Information PRI B3/99 (24) "Diskussion über Lernvorgänge im Gehirn wieder offen").

In Nervenzellen des Vorderhirns einer Maus wird die Bildung des fluoreszierenden Glutamat-Rezeptorproteins (GFP-GluR-A) durch einen Transkriptionsfaktor (tTA) ausgelöst (A). Das Rezeptorprotein lagert sich mit anderen Untereinheiten zusammen (B) und bildet einen Glutamatrezeptorkanal (AMPA-Typ) in der Membran der Nervenzellen (C). Der durch das grünfluoreszierende Protein markierte Rezeptorkanal (D) befindet sich in den Synapsen neben anderen Glutamatrezeptoren (NMDA-Typ).

Der Hippocampus der Mäuse erscheint nach Bestrahlung mit blauem Licht grün (E). Dank der fluoreszierenden Grünfärbung sind im Schnittpräparat Zellkörper und Zellfortsätze (Dendritenbäume) gut zu erkennen (F). Bei hoher Auflösung (G) sind sogar die Spitzen der Dornfortsätze (Synapsen) und der Schaft eines Dendriten (H) zu sehen.


Abbildung: Max-Planck-Institut für medizinische Forschung / Sprengel

Dr. Rolf Sprengel | Referat für Presse- und Öffentli
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: Antibiotikum Hippocampus Ionenkanal Mäuse Nervenzelle Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics