Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erleuchtetes Gehirn

06.07.2001


Wissenschaftlern am Heidelberger Max-Planck-Institut für medizinische Forschung gelingt direkte Beobachtung und Regulierung neuronaler Verschaltungen zwischen Gehirnzellen

Eine Wissenschaftlergruppe um Rolf Sprengel und Volker Mack am Max-Planck-Institut für medizinische Forschung in Heidelberg ist es gelungen, die synaptische Plastizität von Gehirnzellen im Hippocampus von Mäusen sichtbar zu machen und durch die Gabe von Antibiotika zu regulieren (Science, 29. Juni 2001). Dieser experimentelle Ansatz eröffnet neue Möglichkeiten, um die Kluft zwischen der Kenntnis molekularer Vorgänge in einzelnen Nervenzellen und dem Verständnis von Lern- und Gedächtnisleistungen des ganzen Gehirns zu überbrücken.

Die moderne Neurobiologie fragt heute nach den molekularen und zellulären Mechanismen, die unserem Gehirn seine so genannte Plastizität (griech.: plastokos = zum Formen geeignet) geben und es so anpassungsfähig machen. Diese Mechanismen bestimmen - entwicklungsabhängig - die Verknüpfung der Nervenzellen zu spezialisierten neuronalen Netzen, wie dem sensorischen oder dem visuellen System. Sie sind die Grundlage von Lern- und Gedächtnisvorgängen im Gehirn. Sie ermöglichen es, motorische, sensorische oder kognitive Störungen, wie sie zum Beispiel nach einem Schlaganfall eintreten, zu korrigieren.

Diese plastischen Veränderungen finden vorrangig an Synapsen statt, den Schaltstellen für die Kommunikation zwischen Nervenzellen. Eine Nervenzelle kann bis zu 50.000 derartige Strukturen ausbilden. Jede Synapse hat eine präsynaptische Komponente, vergleichbar einem Sender, und eine postsynaptische Struktur, ein Empfangsstation. Informationen werden von einer Nervenzelle zur anderen über die Ausschüttung von chemischen Botenstoffen (Neurotransmittern) weitergegeben. Diese Signalübertragung ist in vielen Nervenverknüpfungen (Synapsen) nicht statisch, sondern kann - abhängig von ihrem Gebrauch - optimiert werden, was man dann als ‚synaptische Plastizität’ bezeichnet. So kann die chemische Neurotransmission entweder dadurch verbessert werden, dass die sendende Nervenzelle eine größere Menge Botenstoff ausschüttet, oder durch eine größere Zahl von Empfängerstrukturen (Rezeptorkanäle) auf der nachgeschalteten Nervenzelle. Bei den molekularen Mechanismen, die der Erinnerung und dem Lernen zugrunde liegen, spielen durch Glutamat gesteuerte Ionenkanäle eine zentrale Rolle.

Den Wissenschaftlern aus dem Max-Planck-Institut für medizinische Forschung in Heidelberg ist es nun gelungen, in Mäusen einen wichtigen Glutamat-gesteuerten Ionenkanal gegen seine grünfluoreszierende Variante auszutauschen. Die Wissenschaftler stellten fest, dass der Ionenkanal auch mit dem eingebauten grünfluoreszierenden Protein (GFP) im zentralen Nervensystem der Mäuse einwandfrei arbeitete. Darüber hinaus fanden die Heidelberger Wissenschaftler einen einfachen Weg, um die Funktion dieses Ionenkanals zu regulieren - über die Zugabe des Antibiotikums Doxyzyclin im Trinkwasser (s. Abbildung, S. 3).

Damit haben die Heidelberger Wissenschaftler zwei wichtige Ergebnisse erreicht: Durch den Einbau des grünfluoreszierenden Proteins in den Ionenkanal können jetzt Lokalisierung, Funktion und die Interaktionen dieser Kanäle direkt beobachtet werden. Mit der Zugabe des Antibiotikums zum Trinkwasser haben sie zudem einen Weg gefunden, um eine der wichtigsten Eigenschaften neuronaler Verschaltungen im Hippocampus, die aktivitätsabhängige Optimierung der Reizweitergabe, regulieren zu können.

Mit vergleichenden Untersuchungen von Mäusen, die mit oder ohne das Antibiotikum Doxyzyclin aufgewachsen sind, wollen die Wissenschaftler in der nächsten Zeit herausfinden, bei welchen Lernvorgängen diese Form der synaptischen Plastizität in den verschiedenen Bereichen des Hippocampus eine Rolle spielt (vgl. dazu auch die Presse-Information PRI B3/99 (24) "Diskussion über Lernvorgänge im Gehirn wieder offen").

In Nervenzellen des Vorderhirns einer Maus wird die Bildung des fluoreszierenden Glutamat-Rezeptorproteins (GFP-GluR-A) durch einen Transkriptionsfaktor (tTA) ausgelöst (A). Das Rezeptorprotein lagert sich mit anderen Untereinheiten zusammen (B) und bildet einen Glutamatrezeptorkanal (AMPA-Typ) in der Membran der Nervenzellen (C). Der durch das grünfluoreszierende Protein markierte Rezeptorkanal (D) befindet sich in den Synapsen neben anderen Glutamatrezeptoren (NMDA-Typ).

Der Hippocampus der Mäuse erscheint nach Bestrahlung mit blauem Licht grün (E). Dank der fluoreszierenden Grünfärbung sind im Schnittpräparat Zellkörper und Zellfortsätze (Dendritenbäume) gut zu erkennen (F). Bei hoher Auflösung (G) sind sogar die Spitzen der Dornfortsätze (Synapsen) und der Schaft eines Dendriten (H) zu sehen.


Abbildung: Max-Planck-Institut für medizinische Forschung / Sprengel

Dr. Rolf Sprengel | Referat für Presse- und Öffentli
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: Antibiotikum Hippocampus Ionenkanal Mäuse Nervenzelle Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics