Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über Wasser bringen gewohnte Vorstellungen zu Fall

14.05.2004


Untersuchungen mit Synchrotronstrahlung deuten auf ring- oder kettenförmige Struktur hin


Struktur der ersten Koordinierungsschale von flüssigem Wasser



Struktur der ersten Koordinierungsschale von flüssigem Wasser



Wasser faszinierte schon Wissenschaftler der Antike, für sie war es eins der "Grund"-Elemente und ein Schlüssel zum Verständnis von Natur und Leben. Heute weiß zwar jedes Schulkind, dass Wasser aus zwei Elementen besteht und wir kennen unzählige lebenswichtige Prozesse, die ohne Wasser nicht stattfinden könnten. Wie wenig wir aber tatsächlich wissen, zeigen neue Ergebnisse eines Teams von zwölf Wissenschaftlern unter Anders Nilsson (Stanford Linear Accelerator Center) und Lars G.M. Pettersson (Universität Stockholm), die jetzt in Science erschienen sind (Vol 304, No. 5673). Sie beobachteten, dass in Wasser die Moleküle untereinander viel schwächer zusammenhalten als gedacht. Und weiter: "Während man bisher nicht einmal wusste, ob sich die Moleküle überhaupt irgendwie ordnen oder ob komplette Unordnung herrscht, glauben wir, dass die Wassermoleküle Ketten oder Ringe bilden", sagt Philippe Wernet, Erstautor der Studie und mittlerweile am Berliner Elektronenspeicherring BESSY. Die Aufsehen erregenden Ergebnisse könnten ein Durchbruch beim Verständnis von Wasser sein.

Wasser ist außergewöhnlich: Z.B. ist seine Dichte bei 4°C maximal, also im flüssigen statt im festen Zustand wie bei anderen Stoffen. Deswegen ist Eis leichter als Wasser und schwimmt. Auch ist es unersetzlich für die Chemie in Zellen - in keiner anderen Flüssigkeit laufen die lebenswichtigen Reaktionen so ab wie in Wasser. Diese und andere Eigenschaften zeigen, dass Wasser eine viel komplexere Flüssigkeit ist, als die einfache Formel H2O vermuten lässt!

In Eis ist jedes Molekül mit vier Nachbarn über Wasserstoffbrücken verbunden: Diese basieren auf elekt-rostatischen Kräften und verknüpfen je ein leicht positives Wasserstoffatom mit dem leicht negativen Sauerstoffatom eines Nachbarmoleküls. Da Sauerstoff zwei Wasserstoffbrücken bilden kann, Wasserstoff eine, hat jedes Wassermolekül vier Nachbarn in einer Kristallstruktur. Schmilzt Eis, brechen Wasserstoffbrücken aufgrund der thermischen Bewegung der Moleküle. Zwar halten sie auch im Wasser kurzfristig Moleküle zusammen, jedoch entstehen und brechen sie mit unglaublicher Dynamik: Jede Bindung existiert nur eine Pikosekunde (Tausendmilliardstel einer Sekunde) und die Kristallstruktur verschwindet.

Bisher glaubten Wissenschaftler, dass sich beim Schmelzen von Eis nicht "allzu viel" ändere. Obwohl niemand die Moleküle beobachten konnte, ging man davon aus, dass sie jederzeit im Schnitt 3,5 Wasserstoffbrücken bilden. Diese Zahl beruhte auf theoretischen Annahmen: Modellrechnungen liefern die bekannten Eigenschaften von Wasser (z. B. die ungewöhnlich große Wärmemenge zum Aufheizen), wenn eine durchschnittliche Bindungszahl von etwa 3,5 angenommen wird. "Mit der Röntgenabsorptions-Spektroskopie untersuchten wir erstmals die "lokale Struktur" von Wasser und fanden heraus, dass die früheren Annahmen falsch sind", sagt Philippe Wernet. Zwar beobachten auch sie bis zu vier Bindungen. Aber nur zwei sind Wasserstoffbrücken, die anderen sind wesentlich schwächer und damit instabiler. "Wir sehen auch, dass eine der beiden Wasserstoffbrücken an einem Wasserstoff-, die andere an einem Sauerstoffatom lokalisiert ist. Das ließe sich dadurch erklären, dass die Moleküle Ringe oder Ketten bilden."

Noch vor wenigen Jahren waren Strukturuntersuchungen an Wasser unmöglich. Man benötigt dazu Röntgenlicht, das den Spektralbereich um 540 eV abdeckt. Weil dieses Röntgenlicht von Luft absorbiert wird, muss der Strahl in einem evakuierten Rohr zum Experiment geleitet und das Wasser in einer seperaten Zelle in den Strahl gebracht werden. Dabei absorbiert das Fenster zwischen Zelle und Strahlrohr einen Großteil des Röntgenlichtes. Bei bisherigen Strahlungsquellen reichte die verbliebene Intensität nicht für Strukturuntersuchungen an Wasser. Erst moderne Synchrotronstrahlungsquellen wie die "Advanced Photon Source" und die "Advanced Light Source" in den USA, "MAX Lab" in Schweden und BESSY II in Berlin liefern so intensives Licht, dass genug Röntgenphotonen für die Experimente bleiben.

Die nächste Generation Röntgenlichtquellen verspricht noch weiterreichende Erkenntnisse: "Einer der wichtigsten Anwendungsbereiche künftiger Röntgenlaser wird die Untersuchung der dynamischen Prozesse bei Reaktionen in Wasser sein", sagt Philippe Wernet. Röntgenlaser wie der von BESSY geplante Freie Elektronen Laser haben nicht nur eine noch höhere Lichtintensität, sie liefern die Photonen auch in ultrakurzen Pulsen von wenigen Femtosekunden Länge (Tausendstel einer Pikosekunde, "Millionstelmilliardstel" einer Sekunde). Mit ihnen ließe sich die Dynamik von Wasser untersuchen: Zunächst bricht ein Laserpuls die vorhandenen Wasserstoffbrücken. Mit zeitlich versetzten Röntgenabsorptionsmessungen beobachtet man dann den Zustand der Moleküle. Weil die Röntgenblitze so kurz sind, erhält man eine Folge von "Momentaufnahmen", die aneinander gereiht die Entstehung der neuen Bindungen zeigen. Auch Reaktionen in Wasser, dem wichtigsten Lösungsmittel, ließen sich verfolgen. Da Wasser und die gelösten Moleküle getrennt untersucht werden könnten, bekäme man ein vollständiges Bild und könnte z.B. klären, wie Wasser an der Reaktion teilnimmt und sie beeinflusst.

Dr. Markus Sauerborn | idw
Weitere Informationen:
http://www-ssrl.slac.stanford.edu/
http://www.bessy.de/presse

Weitere Berichte zu: Bindung Molekül Röntgenlicht Wasserstoffbrücke

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistenzen im Fokus der Forschung
12.12.2018 | Deutsches Zentrum für Infektionsforschung

nachricht Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab
12.12.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics