Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Was das Pflanzenprotein im Nadelöhr macht"

02.04.2003


Neuer Mechanismus für Membran-Transport in Zelle entdeckt



Chloroplasten sind wichtige Bestandteile von Pflanzenzellen und von zwei Membranen umgeben. Die meisten Proteine, also Eiweißbausteine, der Chloroplasten werden im Zellkern kodiert, im Zellinneren synthetisiert und müssen dann durch diese Doppelmembran geschleust werden. Es sind mehrere Membranproteine bekannt, die dabei eine Rolle spielen. Der Mechanismus des Transportvorganges selbst ist unverstanden. Prof. Jürgen Soll und zwei Mitarbeiter vom Department Biologie I, Botanik, haben nun ein Protein identifiziert, das als molekularer Motor andere Proteine durch die Chloroplasten-Membranen schleust, wobei ein bislang unbekannter Mechanismus zugrunde liegt. Die Veröffentlichung ist online in den Proceedings of the National Academy of Sciences erschienen. Eine Druckversion wird in etwa zwei Wochen folgen (PNAS, Bd. 100, S. 4604 - 4609, 2003). Die Wissenschaftler hatten vor einigen Jahren das Protein Toc75 identifiziert, welches sich wie ein Tunnel durch die Doppelmembran zieht und neue Chloroplasten-Proteine in das Innere der Organellen läßt. Wie dieser Vorgang aber angetrieben wird, war bislang unklar. Nun konnte das Team um Soll zeigen, dass eine kleine Proteinmaschinerie dafür verantwortlich ist. Toc159 bindet an neu synthetisierte Chloroplasten-Proteine und schiebt diese dann Stück für Stück durch den Kanal Toc75. "Der Prozess ähnelt ein wenig dem Nähen mit einer Nähmaschine", erklärt Soll. "Toc159 ist dabei die Nadel mit Motor, das zu transportierende Protein ist der Faden, und das Kanalprotein in der Membran ist der Stoff."



Einige Bestandteile von höheren Zellen verfügen über eigenes genetisches Material. Dazu gehören auch die Photosynthese betreibenden Chloroplasten. Allerdings werden die meisten Chloroplasten-Proteine mit nur wenigen Ausnahmen von der DNA im Zellkern kodiert und im Zellinneren synthetisiert. Deshalb müssen diese Proteine auch erst die Doppelmembran der Chloroplasten überwinden, um an ihren Bestimmungsort zu gelangen. Tunnelförmige Kanalproteine, die die beiden Membranen durchziehen, sind das "Eingangstor" für diese neu synthetisierten Proteine.

Soll und seine Mitarbeiter haben vor einiger Zeit das Kanalprotein Toc75 in der Außenmembran der Chloroplasten identifiziert. Wie eine Pore verbindet es das Innere der Zelle mit dem Inneren der Organelle und schleust Chloroplasten-Proteine ein. Die treibende Kraft hinter diesem Vorgang ist das neu entdeckte Protein Toc159, wie das Team um Soll jetzt in vitro zeigen konnte. Bislang unbekannt war allerdings der genaue Mechanismus, wie ein neu synthetisiertes Chloroplasten-Protein zu Toc159 gelangt und von diesem dann durch das Kanalprotein Toc75 "gefädelt" wird.

Die Wissenschaftler vermuten, dass Toc159 das neu synthetisierte Chloroplasten-Protein Stück für Stück durch den Kanal drückt. Vergleichbar ist dieser Mechanismus der Funktionsweise einer Nähmaschine, die den Faden auch in kleinen Abschnitten durch den Stoff fädelt. Die Forscher schlagen einen Mechanismus vor, bei dem zunächst das neu synthetisierte Chloroplasten-Protein von dem Membran-gebundenen Toc159 gehalten wird. Dadurch wird eine energiereiche Einheit, die ebenfalls an diesen molekularen Motor bindet, gespalten. Das setzt genug Energie frei, um einen Teil von Toc159 auf den Membrankanal zuzubewegen und einen Abschnitt des Chloroplasten-Proteins hineinzudrücken. Wird die Bindung gelöst, kann eine neue Runde beginnen: Ein weiter hinten liegender Abschnitt des Chloroplasten-Proteins bindet an Toc159, Energie wird freigesetzt, und der "Faden" ein Stück weiter in den Kanal geschoben.

Proteine können ihre Funktion nur ausführen, wenn sie eine charakteristische, dreidimensionale Form angenommen haben. Sie werden von bestimmten Organellen im Zellinneren, so genannten Ribosomen, zusammengesetzt. Zunächst wird ein Baustein an den anderen gehängt, so dass eine lange Kette entsteht. Aber schon während der Synthese am Ribosom beginnt die Faltung des Proteins. Neue Proteine, die in das Innere von Chloroplasten gelangen müssen, dürfen sich nicht falten. Denn dann passen sie nicht durch die engen Kanalproteine. Bei den bislang bekannten Mechanismen sorgen bestimmte Proteine, die Chaperone, während der Synthese und auch danach dafür, dass sich die neu gebauten Proteine nicht falten. Dadurch ähneln diese einem langen, dünnen Faden und können leichter durch enge Membranporen geschleust werden. Im neuen Modell spielen Chaperone keine Rolle. Es ist allerdings noch unklar, ob Toc159 die Proteine selbst während ihrer Synthese bindet und im ungefalteten Zustand hält, oder ob sie von einem anderen Trägerprotein an die Chloroplasten-Membran zu Toc159 gebracht werden.

Ansprechpartner:

Prof. Dr. Jürgen Soll
Department Biologie I, Botanik
Tel. 089/17861-245,-244
Fax. 089/17861-185
E-mail: soll@uni-muenchen.de

Cornelia Glees-zur Bonsen | idw

Weitere Berichte zu: Chloroplasten Chloroplasten-Protein Kanalprotein Protein Toc159 Toc75

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum
19.07.2018 | Stiftung Tierärztliche Hochschule Hannover

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics