Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Proteinfaltung auf der Spur

01.02.2001


Falsch gefaltete Proteine sind für Krankheiten wie BSE oder Alzheimer verantwortlich / Frankfurter Forscher induzieren Faltungsprozesse thermisch, um sie analysieren zu können

FRANKFURT. Eine Reihe von Krankheiten, die derzeit in der Diskussion stehen, sind auf Fehlfunktionen nicht korrekt gefalteter Proteine zurückzuführen. Dazu gehören zahlreiche Muskelkrankheiten, aber auch Alzheimer, die Creutzfeld-Jakob-Krankheit, Scrapie und BSE. Die Ursachen sind weitgehend unbekannt; man weiß jedoch, dass fehlgefaltete Proteine (Prionen) unter anderem pathologisch wirken, indem sie zusammenklumpen (aggregieren) und nicht mehr abgebaut werden können. Die Forschungsgruppen von Prof. Josef Wachtveitl und Prof. Werner Mäntele untersuchen derzeit die Mechanismen der Proteinfaltung. Mit Hilfe spektroskopischer Methoden versuchen sie, die Prozesse der Strukturbildung - den Übergang vom ungeordneten Aminosäure-Knäuel zu einer geordneten Struktur - zu charakterisieren und zu entschlüsseln. Damit leisten die Wissenschaftler einen Beitrag zum Verständnis der komplexen Mechanismen, die zu einem pathogenen Protein führen. In beiden Gruppen werden Modellsysteme und kleine Proteine untersucht, um die Leistungsfähigkeit neuer Methoden auszuloten und zu verbessern. Die bisherigen Ergebnisse sind vielversprechend: Strukturmerkmale an Proteinen können identifiziert und Strukturumwandlungen zeitlich verfolgt werden.

Denn der Ablauf grundlegender Prozesse der Proteinfaltung ist bisher wenig bekannt. Die meisten Proteine falten korrekt in der erstaunlich kurzen Zeit im Bereich von einer milliardstel (10-9 ) Sekunde bis zu Sekunden. Daher nimmt man an, dass die Energielandschaft, die Faltungswege und Geschwindigkeit bestimmt, relativ übersichtlich ist und ein klares Optimum hat, das vom Protein "intuitiv gefunden" wird. Passiert dies nicht, ist ein derartiges Protein in seiner Funktion gestört, wenn nicht ganz unbrauchbar. Die Strukturbildung ist mit der Entstehen einer Siedlung vergleichbar: relativ schnell stehen die ersten Häuser, die sich allmählich zu Stadtteilen entwickeln und schließlich die ganze Stadt bilden.
Die korrekte Strukturbildung ist die Voraussetzung dafür, dass die Proteine ihre Funktionen fehlerfrei erfüllen können: Nach ihrer Bildung aus einzelnen Aminosäuren müssen sie sich in eine präzise dreidimensionale Struktur falten. Der Übergang von einer ungeordneten Kette von Aminosäuren in eine - und nur eine ganz spezifische der zahllosen Möglichkeiten, eine räumliche Anordnung einzunehmen, wird von der energetischen Situation bestimmt.

Die Gruppe um Prof. Josef Wachtveitl vom Institut für Physikalische und Theoretische Chemie setzt kurzzeit- spektroskopische Methoden ein, um primäre Prozesse der Strukturbildung bei Proteinen zu untersuchen. Sie laufen in der unvorstellbar kurzen Zeit von 10-12 bis 10-9 - einer billionstel bis einer milliardstel Sekunde - ab. Unter Einsatz neuartiger optischer Schalter können mit einem ultrakurzen Laserblitz Strukturmotive ineinander umgewandelt werden; diese Strukturbildung wird mit Laserlicht charakterisiert.

Prof. Werner Mäntele und Dr. Christian Zscherp vom Institut für Biophysik arbeiten mit Temperaturänderungen, um die Faltungsprozesse zu untersuchen. Mit infrarotem Messlicht wird die Bildung der Strukturmotive wie einer Helix oder eines Faltblattes verfolgt. Um die Entfaltung und Rückfaltung von Proteinen auch zeitlich auflösen zu können, wurde am Institut für Biophysik im Rahmen einer Physik-Diplomarbeit ein neuer Ansatz erfolgreich erprobt. Tatiana Nazarova baute eine Apparatur auf, die es ermöglicht, die Temperatur von Proteinproben mit einem Infrarot-Laserblitz in wenigen milliardstel Sekunden um bis zu 20° zu erhöhen. Durch diesen laserinduzierten Temperatursprung kann die Entfaltung des Proteins sehr schnell gestartet werden. Mit abstimmbaren Infrarot-Halbleiterlasern wird dann die Dynamik der Entfaltung und der Rückfaltung verfolgt.

Kontakt: Prof. Dr. Josef Wachtveitl, Inst. für Physikalische und Theoretische Chemie; Tel.: 069/798-29351; E-Mail: wveitl@theochem.uni-frankfurt.de; Prof. Dr. Werner Mäntele, Inst. für Biophysik; Tel.: 069/6301 5835; E-Mail: maentele@biophysik.uni-frankfurt.de

Gottfried Oy | idw

Weitere Berichte zu: Entfaltung Protein Proteinfaltung Strukturbildung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics