Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Filigraner Arbeiter

29.09.2000


Das gezeigte Bild (farbig und in hoher

Auflösung) können Sie hier aus dem Internet

herunterladen


In der Arbeitsgruppe des Kaiserslauterer Biologen und Physikers Prof. Dr. Uwe Koch dagegen soll ein Roboterarm in Kürze hochpräzise Gewichtsmessungen durchführen. Das nötige Fingerspitzengefühl hat er sich
dabei dem Menschen abgeschaut.

Sie hantieren mit zentnerschweren Metallteilen, als wären sie aus Papier. Jemandem eine Tasse Kaffee anzubieten, ohne etwas zu verschütten oder gar das Porzellan zu zerdeppern, fällt ihnen dagegen schwer: Roboter gelten bislang eher als grobe Kraftprotze denn als sensible Feinmechaniker. In der Arbeitsgruppe des Kaiserslauterer Biologen und Physikers Prof. Dr. Uwe Koch dagegen soll ein Roboterarm in Kürze hochpräzise Gewichtsmessungen durchführen. Das nötige Fingerspitzengefühl hat er sich dabei dem Menschen abgeschaut.
Zwei Motoren an der "Schulter" und am "Ellenbogen" erlauben dem mechanischen Arm, jeden Punkt einer Ebene anzusteuern. Im Unterschied zu anderen Robotern ist der Arm der Arbeitsgruppe "Pheromone" jedoch elastisch: Die Motoren sind nicht über starre Getriebe mit den Gelenken verbunden, sondern über Federn. Ein Hochgeschwindigkeitsrechner gleicht die entstehenden Pendelbewegungen aus, indem er mit dem entsprechenden Motor gegenlenkt.
Dank dieser Aufhängung sind die Bewegungen des Androiden nicht ruckhaft, sondern wirken sanft und elegant - ganz wie beim Menschen. Kein Wunder: Dessen Muskeln, Sehnen und Bänder sind ebenfalls elastisch und übernehmen bei Bewegungen die Rolle der Federn. Auch ist der mechanische Arm wesentlich leichter als entsprechende starre Geräte, die beim Beschleunigen und Abbremsen mit hohen Trägheitskräften fertig werden müssen.
Auf die Idee, das in der Natur vorhandene Know-how für die Konstruktion eines neuen Roboters zu nutzen, kam Prof. Dr. Bernhard Möhl, Mitglied der Arbeitsgruppe Bionik an der Universität Saarbrücken. Er entwickelte einen Prototypen samt Steuerung, der die Funktionsweise des bionischen Armes demonstriert. Die Mitarbeiter um Pheromonforscher Koch wollen den filigranen Arbeiter nun für ultragenaue Wägungen einsetzen - eine Aufgabe, die momentan noch einen Mitarbeiter über mehrere Stunden pro Tag beschäftigt.

Ansprechpartner:
Prof. Dr. Uwe Koch
Arbeitsgruppe Pheromone
Tel.: 0631/205-2425
Fax: 0631/204-2998
E-Mail: ukoch@rhrk.uni-kl.de
WWW: http://www.uni-kl.de/FB-Biologie/AG-Koch/

Weitere Informationen finden Sie im WWW:

Frank Luerweg | idw

Weitere Berichte zu: Biologe Filigraner Fingerspitzengefühl Roboterarm

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Beleuchtung von Höhlen vertreibt Fledermäuse – die Farbe des Lichts spielt nur untergeordnete Rolle
11.12.2019 | Forschungsverbund Berlin e.V.

nachricht Molekulare Milch-Mayonnaise: Wie Mundgefühl und mikroskopische Eigenschaften bei Mayonnaise zusammenhängen
11.12.2019 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics