Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tauziehen in der Zelle

18.03.2008
Max-Planck-Wissenschaftler klären Transportmechanismus in Zellen auf

Leben bedeutet vor allem Logistik: Ständig müssen in den Zellen Nährstoffe, Werkzeuge und Informationen von einem Ort zum anderen gelangen. Wissenschaftler vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung zeigen nun, wie molekulare Motoren in den Zellen Lasten transportieren: Zwei konkurrierende Motorteams bewegen sich wie beim Tauziehen in entgegen gesetzte Richtungen. Das Gewinnerteam bestimmt nach dem ausgetragenem Wettstreit die Transportrichtung. (PNAS, 17. März 2008).


Der Wettstreit molekularer Motoren: Eine blaue Fracht wird von zwei Motorteams transportiert, die entlang des gelben Filaments laufen. Das rote Motorteam zieht nach rechts zum Plus-Ende (+), das grüne nach links zum Minus-Ende (−). Wenn beide Teams ziehen (Mitte), behindern sie sich gegenseitig so stark, dass sich die Fracht kaum vorwärts bewegt. Gewinnt hingegen ein Team die Oberhand, geht es schnell voran, weil die gegnerischen Motoren vom Filament abgezogen werden. Bild: Melanie Müller / MPI für Kolloid- und Grenzflächenforschung

Transportprozesse in den Zellen unseres Körpers ähneln dem Gütertransport auf der Straße. Dabei arbeiten molekulare Motoren, spezielle Eiweiß-Moleküle, als Lastwagen: Sie nehmen die zelluläre Fracht huckepack und transportieren diese entlang von Filamenten, den Straßen der Zellen. Allerdings sind die molekularen Transporter eine Milliarden Mal kleiner als Lastwagen, können sich je nach Transporter-Typ nur zum Anfang oder zum Ende des Filaments bewegen, müssen sich durch ein Gewusel kämpfen, dass eher an eine überfüllte Fußgängerzone als eine Autobahn erinnert - und liegen im Wettstreit mit Motoren, die in die andere Richtung laufen wollen, wie die Wissenschaftler vom Potsdamer Max-Planck-Institut für Kolloid- und Grenzflächenforschung jetzt in einer Computer-Simulation herausgefunden haben.

Am Tauziehen um eine Last sind immer mehrere Motoren beteiligt - zum Beispiel einige vom Kinesin-Typ und einige vom Dynein-Typ. Die Kinesin-Motoren laufen zu dem Ende des Filaments, das Biologen als Plus-Ende bezeichnen, die Dynein-Motoren zum Minus-Ende. Den Erkenntnissen der Potsdamer Wissenschaftler zufolge bestimmt das stärkere Motoren-Team, in welche Richtung eine Fracht wandert. Es setzt sich beim Tauziehen durch, indem es gegnerische Motoren vom Filament abreißt. Bislang vermutete man, dass es einen Koordinations-Apparat gibt, der immer nur ein Motorteam zulässt. Dieser würde dann zwischen dem einen und dem anderen Team umschalten.

... mehr zu:
»Zelle

"Das Tauziehen ist der einfachste vorstellbare Mechanismus", sagt Melanie Müller, eine der beteiligten Wissenschaftlerinnen: "Aber er hat es in sich, wenn man die experimentell gemessenen Eigenschaften der einzelnen Motoren berücksichtigt. Diese reagieren nämlich stark nichtlinear, wenn man an ihnen zieht." Ein Motor des Verliererteams spürt eine starke Kraft und wird schnell vom Filament heruntergezogen. Die verbleibenden Motoren müssen dann die Zugkraft des Gewinnerteams allein aushalten und lösen sich noch schneller ab. Dominoartig geben die Verlierermotoren auf und werden vom Filament gezogen, bis keiner mehr übrig ist. Das Gewinnerteam kann jetzt die Fracht schnell und ungehindert transportieren. "Allerdings überlässt die Zelle und Niederlage nicht dem Zufall, damit die Fracht auch an dem Ende der Straße ankommt, an dem sie gebraucht wird. "Da greifen wahrscheinlich Regulationsproteine ein", sagt Melanie Müller.

Ob ihr Modell vom Tauziehen der Wirklichkeit entspricht, überprüften die Forscher am Transport von Fetttröpfchen in Drosophila-Embryos. Tatsächlich erklärt es die experimentellen Beobachtungen, die es teilweise auch schon vorher zum Transport-Mechanismus gab: Eine Fracht läuft auf einem Filament nicht schnurstracks von einem zum anderen Ende, vielmehr wird sie immer wieder auch in die Gegenrichtung gezogen. Die Verlierer-Motoren können die Gewinner-Motoren nämlich gelegentlich doch von der Filament-Straße abheben, weil der thermische Sturm die Gewinner-Motoren gelegentlich von der Straße bläst. Die Fracht-Teilchen bewegen sich auf diese Weise in beide Richtungen.

"Solch ein bidirektionaler Transportprozess ist sehr flexibel", erklärt Melanie Müller: Er kann die Richtung wechseln, wenn die Fracht am Ziel vorbeigelaufen ist, oder die Transportgeschwindigkeit ändern. Der Mechanismus des Tauziehens, bei dem das Gewinner-Team nicht nur die Last, sondern auch die gegnerische Motoren-Partei durch die Zelle zieht, löst zudem ein anderes logistisches Problem in der Zelle. Er bringt auch die Motoren immer zu dem Ende des Filaments, von dem aus sie loslaufen können und verhindert so, dass sich die Motoren eines Typs an ihrem jeweiligen Ziel stauen.

"Trotz des einfachen Mechanismus zeigt ein Fracht-Teilchen, das durch zwei Motorenteams transportiert wird, ein sehr komplexes Motilitätsverhalten", sagt Melanie Müller. Es gibt sieben verschiedene Motilitätszustände. Das sind unterschiedliche Kombinationen aus Bewegungen zum Plus- und Minus-Ende sowie Pausen, zwischen denen das Fracht-Teilchen wechseln kann. Die Wahrscheinlichkeiten für die Bewegung in eine bestimmte Richtung oder für den Stopp sowie die Zeiten zwischen zwei Richtungswechseln hängen stark von den Eigenschaften und der Anzahl der beteiligten Motoren ab. Dies nutzt die Zelle aus, um den Fracht-Transport zu steuern. Wird ein Motorteam stärker oder schneller angetrieben, bewegt sich die Fracht statt in die Plus- in die Minus-Richtung oder pausiert.

"Der einfache und effiziente Tauzieh-Mechanismus könnte für den Transport in Mikrolaboratorien auf Chips eingesetzt werden", sagt Melanie Müller. Dem biologischen Vorbild entsprechend könnten Motorteams bestimmte Moleküle gezielt zu spezifischen Reaktionsorten auf dem Chip transportieren, und dann das Reaktionsprodukt wieder zurückbringen. "Unsere quantitative Tauzieh-Theorie ermöglicht es, die Motoreigenschaften für diesen Zweck zu optimieren", so Müller.

[MM/PH]

Originalveröffentlichung:

Melanie J.I. Müller, Stefan Klumpp, und Reinhard Lipowsky
Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors

PNAS Early Edition, 17. März 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 3D-Landkarten der Genaktivität
20.11.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics