Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überlebensfaktor der T-Zellen entdeckt

17.03.2008
Um einer Infektion wirkungsvoll zu begegnen, muss das Immunsystem auf einen Vorrat an naiven T-Zellen zurückgreifen können.

Bislang wurde aber nur wenig verstanden, wie sich diese Zellen im Körper behaupten. Forscher der Universität Basel haben nun eine Komponente entdeckt, die für das Überleben dieser Zellen unentbehrlich ist. Ihre Forschungsresultate wurden von der Fachzeitschrift "Nature Immunology" publiziert.


In natürlichen Lymphknoten sind die rot markierten T-Zellen deutlich zu erkennen.


Doch finden sich nur wenige T-Zellen in den Lymphknoten von Mäusen ohne das Protein coronin 1. Fotos: Carmen Blum und Hans-Reimer Rodewald, Universität Ulm

Wenn ein Organismus von einem Virus oder einem Bakterium befallen wird, kommt es zu einer Reaktion der weissen Blutkörperchen, mit welcher der Krankheitserreger bekämpft wird. Eine besonders wichtige Art dieser weissen Blutkörperchen sind die so genannten T-Lymphozyten: Sie entstehen im Knochenmark und reifen im Thymus, weshalb sie kurz T-Zellen genannt werden.

Nach der Reifung verlassen sie den Thymus und zirkulieren über längere Zeit inaktiv in Blut und Lymphe. In diesem Stadium werden sie als naive T-Zellen bezeichnet, da sie noch keinen Kontakt zu einem Fremdkörper (einem Antigen) hatten.

... mehr zu:
»Protein »T-Zelle »Thymus

Bei einer Infektion können andere Arten von weissen Blutkörperchen diese naiven T-Zellen aktivieren, indem sie ihnen kleine Bestandteile der Krankheitserreger präsentieren, die von den Rezeptoren der T-Zellen erkannt werden.

Für eine angemessene Immunantwort muss ständig eine grosse Zahl von naiven T-Zellen durch den Organismus zirkulieren, die bei einer Infektion aktiviert werden können. Da die Thymusfunktion im Alter drastisch abnimmt, die Grösse des T-Zellpools aber relativ konstant bleibt, müssen Mechanismen existieren, welche die verminderte Thymusaktivität ausgleichen. Die genauen Mechanismen der Homöostase der naiven T-Zellen im Menschen wurden bislang aber nur unzulänglich verstanden.

Hier kamen den Basler Forschern nun die Resultate aus einem früheren Projekt zustatten. An gentechnisch modifizierten Mäusen hatten sie nachgewiesen, dass ein Protein namens coronin 1 dem berüchtigten Tuberkuloseerreger M. tuberculosis ermöglicht, innerhalb von Fresszellen (Makrophagen) zu überleben. "Wir konnten uns aber nicht vorstellen, dass coronin 1 nur dazu da sein sollte, das Überleben von M. tuberculosis zu erleichtern", erklärt Pieters. "Deshalb haben wir diese Mäuse auf Anomalien überprüft, um so die reguläre Funktion dieses Proteins zu identifizieren."

Bei weiteren Untersuchungen entdeckten die Forscher, dass sich im Blut von Mäusen ohne coronin 1 vergleichsweise wenige T-Zellen fanden, obwohl ihr Thymus unverändert solche Zellen produzierte. Damit war klar, dass dieses Protein bei der Selbstregulation der T-Zellen ausserhalb des Thymus eine entscheidende Rolle spielt.

Als die Basler Forscher die Signalvorgänge in T-Zellen ohne coronin 1 unter die Lupe nahmen, stellten sie eine Absenz von Signalen im T-Zell-Rezeptor fest, ohne die sich die Zellen nicht vermehren können.

Signalvorgänge in T-Zellen umfassen eine komplexe biochemische Verkettung, die zur Produktion von Zytokinen führt, Proteinen, die für das Überleben der T-Zellen essenziell sind. Einer der ersten Schritte besteht dabei darin, dass in der Zelle ein Membran-Netzwerk Kalzium ins Zellplasma abgibt.

Um diesen Vorgang bei den Mäusen ohne coronin 1 zu analysieren, versahen die Forscher ihre T-Zellen mit einer Substanz, die bei einer Veränderung der Kalziumkonzentration die Farbe wechseln. "Die Resultate waren verblüffend", kommentiert Pieters, "und sie erklärten vollständig, weshalb T-Zellen in Mäusen ohne coronin 1 dezimiert werden".

Denn während natürliche T-Zellen auf einen Auslösereiz an ihren Rezeptoren mit der schnellen Abgabe von Kalzium ins Zellplasma reagieren, war dies beim Fehlen von coronin 1 nicht der Fall. Wenn aber kein Kalzium ins Zellplasma gelangt, kommt es auch zu keinen Signalen, womit die naiven T-Zellen ohne coronin 1 über kurz oder lang absterben.

Der Nachweis, dass coronin 1 ein Überlebensfaktor für periphere T-Zellen darstellt, verbessert das Verständnis ihrer Regulationsmechanismen und schafft möglicherweise einen Ausgangspunkt, von dem aus Stoffe zur Behandlung einer übermässigen Vermehrung von Lymphozyten und von Autoimmunkrankheiten entwickelt werden können.

Originalbeitrag
Philipp Mueller, Jan Massner, Rajesh Jayachandran, Benoit Combaluzier, Imke Albrecht, John Gatfield, Carmen Blum, Rod Ceredig, Hans-Reimer Rodewald, Antonius G Rolink & Jean Pieters
Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering

Nature Immunology, Published online: 16 March 2008 | doi:10.1038/ni1570

Weitere Auskünfte
Prof. Dr. Jean Pieters, Biozentrum der Universität Basel, Klingelbergstrasse 50, 4056 Basel, Tel. +41 61 267 14 94, mobil: +41 79 749 01 15, E-Mail: jean.pieters@unibas.ch

Reto Caluori | idw
Weitere Informationen:
http://www.unibas.ch
http://www.nature.com/ni/journal/vaop/ncurrent/abs/ni1570.html

Weitere Berichte zu: Protein T-Zelle Thymus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optischer Sensor soll Pflanzenzüchtung beschleunigen
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Pflanzen-Wirkstoff bremst aggressiven Augenkrebs
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit dem Forschungsflugzeug ins ewige Eis - Meteorologen starten Messkampagne

20.03.2019 | Geowissenschaften

Optischer Sensor soll Pflanzenzüchtung beschleunigen

20.03.2019 | Biowissenschaften Chemie

Wie der Mix aus Acker, Bäumen und Tieren auf dem Feld den Ertrag von Landwirten steigert

20.03.2019 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics