Protein lässt Zellen geregelt wachsen

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried berichten im Fachmagazine Neuron, dass sie ein Protein gefunden haben, dass den Nervenzellen im Auge der Fruchtfliege den Weg zu ihren Partnerzellen weist.

Durch das gezielte Ausschalten eines Gens haben sie das Protein Gogo (Golden Goal) identifiziert, das Nervenzellen während der Entwicklung des Fliegenauges nicht nur als Navigationshilfe dient, sondern auch als Abstandshalter zu anderen Nervenzellen. Die Forscher nehmen an, dass ähnliche Mechanismen auch am Aufbau des Wirbeltier-Nervensystems beteiligt sein könnten.

Die jungen Nervenzellen können mit dem Straßengewirr einer unbekannten Großstadt verglichen werden, in der sie nach geeigneten Wegen suchen. Erschwerend kommt hinzu, dass auf kleinstem Raum tausende von Zellen ihre Fortsätze – so genannte Axone – auf ihre Partnerzellen zuwachsen lassen. Ungewollten Zusammenstöße könnten daher schnell zu einem Chaos führen, das schwere Folgen hat, denn wenn eine Nervenzelle ihr Ziel nicht erreichen kann, führt dies meist zu Funktionsstörungen im Organismus. Um die Frage nach dem Auffinden des richtigen Weges zu klären, haben die Forscher die Augenentwicklung des Modellorganismus, der Fruchtfliege Drosophila, genauer unter die Lupe genommen.

Das Fliegenauge eignet sich deshalb sehr gut als Forschungsobjekt, weil es im Vergleich zum Wirbeltiersystem sehr viel einfacher aufgebaut und daher leichter zu untersuchen ist und es gleichzeitig jedoch komplex genug ist, um generelle Mechanismen der neuronalen Wegfindung aufzuklären. Ein weiterer Vorteil des Modellorganismus Drosophila ist, dass Forscher auf eine Vielzahl genetischer Methoden zurückgreifen können, ohne dabei das übrige Nervensystem zu verändern. So können etwa ganz gezielt Gene der Augenentwicklung verändert werden. Das Facettenauge der Fliege wächst in einem komplizierten Schema. Wenn durch genetische Veränderung das Gogo-Protein nicht mehr gebildet werden kann, stoßen die Zellfortsätze, die zur Bildung des Sehstabs erforderlich sind, zusammen und verklumpen. Das bedeutet, dass sich der Sehstab nicht mehr ausbilden kann. Das Fazit war, dass sich ohne das Protein kein funtktionstüchtiges Fliegenauge ausbilden konnte.

„Durch die genetischen und zellbiologischen Hinweise vermuten wir, dass Gogo ein Rezeptor-Protein ist, das über Bindungspartner zur gegenseitigen Abstoßung oder Anziehung von Zellfortsätzen führt“, so Studienleiter Takashi Suzuki. Der Wissenschaftler geht davon aus, dass auch noch andere Rezeptor-Proteine und ihre Bindungspartner an der Wegfindung der Nervenzellen beteiligt sind. Suzuki vermutet, dass es allerdings nicht mehr als zehn sind. „Wenn wir die Kombination dieser Moleküle verstanden haben, werden wir hoffentlich die Entwicklung des gesamten Systems verstehen können.“ Viele der Fruchtfliegen-Gene spielen auch bei der Entwicklung des Nervensystems anderer Organismen eine Rolle. Die Erkenntnisse zur Augenentwicklung der Fruchtfliege sind daher auch zum Verständnis des menschlichen Nervensystems wichtig.

„Falls es in Zukunft möglich sein wird, aus multipotenten Stammzellen bestimmte Gewebe zu regenerieren, so könnten zum Beispiel neue Retinazellen im Labor gezüchtet und in ein geschädigtes Auge transplantiert werden“, erklärt Suzuki gegenüber pressetext. „Damit die neue Retina ihre Funktion jedoch erfüllen kann, müssten auch die Nervenkontakte ins Gehirn wieder hergestellt werden.“ Molekülen wie Gogo komme hier eine wichtige Rolle zu – wenn die Mediziner wissen, welches Molekül sie wann und wo einsetzen müssen. „Unsere Arbeit gibt die ersten Einblicke zur Frage, was die wichtigen Moleküle für solche neuen Nervenverbindungen sein könnten und wann und wo sie einen Effekt haben könnten“, erklärt der Forscher abschließend.

Media Contact

Wolfgang Weitlaner pressetext.austria

Weitere Informationen:

http://www.neuro.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer