Bald Tuberkulose-Nachweis per Chip?

Viele neue Techniken zur schnellen und empfindlichen Detektion von Krankheitskeimen, die auf Basis der Nanotechnologie entwickelt werden, versagen im klinischen Alltag, weil sie aufwändige Probenvorbereitungen oder komplexe Messaufbauten benötigen oder einfach nicht mit dem hohen Probenaufkommen einer Klinik fertig werden.

Forscher um Ralph Weissleder von der Harvard Medical Schoool haben nun einen sehr einfachen Ansatz für den raschen Nachweis von Pathogenen entwickelt, der keine weitere Probenvorbereitung erfordert. Wie sie in der Zeitschrift Angewandte Chemie berichten, basiert er auf magnetischen Nanopartikeln und einer magnetischen Kernresonanz-(NMR)-Messung.

Für ihre Tests verwendeten die Forscher das Bacille Calmette-Guérin (BCG), ein nach seinen Entwicklern benanntes Mykobakterium, das Anfang des 20. Jahrhunderts aus Rindertuberkelbazillen gezüchtet wurde. Es handelt sich dabei um einen abgeschwächten Stamm, der als Lebendimpfstoff gegen Tuberkulose eingesetzt wird. Zudem dient er in der Forschung als Modell für den wahren Tuberkulose-Erreger Mycobacterium tuberculosis.

Und so einfach geht der Test: Eine Probe wird mit einer Lösung inkubiert, die magnetische Nanopartikel enthält. Diese Nanopartikel bestehen aus einem Eisenkern, der von einer Schale aus Ferrit (einem Eisenoxid) umgeben ist. An die Oberfläche der Nanopartikel knüpften die Forscher Anti-BCG-Antikörper. Sind BCG-Bazillen in der Probe vorhanden, binden die Antikörper daran und bestücken die Bazillen auf diese Weise mit Magnetpartikeln. Nun wird die Flüssigkeit durch Mikrokanälchen in eine winzige Kammer eines mikrofluidischen Chips geleitet. Am Ausgang der Kammer befindet sich eine Membran, die die Bazillen zurückhält, die restliche Lösung inklusive überschüssiger Magnetpartikel aber durchlässt. Auf diese Weise reichern sich die Bazillen in der Kammer an.

Die Kammer ist von einer kleinen Spule umgeben, die das für Kernresonanzmessungen notwendige Magnetfeld erzeugt. Die Messungen ähneln einer klinischen Kernspintomographie. Die mit Magnetpartikeln bestückten Bazillen beeinflussen das Verhalten der Kernspins der Wassermoleküle in der Kammer. Dies lässt sich mit einem miniaturisierten NMR-Handgerät direkt auf dem Chip detektieren. So gelang es, schon 20 Bazillen in einem Milliliter einer Auswurfprobe binnen 30 min nachzuweisen.

Angew. Chem.: Presseinfo 27/2009

Autor: Ralph Weissleder, Harvard Medical School, Boston (USA), http://csb.mgh.harvard.edu/weissleder

Angewandte Chemie 2009, 121, No. 31, 5767-5760, doi: 10.1002/ange.200901791

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer