Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien befreien sich mit molekularer «Harpune»

16.06.2017

Eine Vielzahl von Bakterien ist mit molekularen «Nano-Harpunen» ausgestattet. Damit bekämpfen sie unliebsame Konkurrenten oder manipulieren ihre Wirtszellen. Der Erreger der Tularämie, einer hochansteckenden Infektionskrankheit, verwendet hingegen seine Waffe, um sich aus der Gefangenschaft der Abwehrzellen zu retten. Wie dies den Bakterien gelingt, darüber berichten Forscher vom Biozentrum der Universität Basel in der aktuellen Ausgabe von «Nature Communications».

Die Tularämie ist eine Seuche, die zumeist unter Hasen und Nagern grassiert. Aber auch der Mensch kann sich mit der Krankheit anstecken. Der Auslöser der lebensbedrohlichen Krankheit ist das Bakterium Francisella tularensis. Die Infektionsbiologen um Prof. Marek Basler und Prof. Petr Broz vom Biozentrum der Universität Basel zeigen nun am Beispiel einer für den Menschen harmlosen Francisella-Unterart, wie sich diese Bakterien mithilfe einer Nano-Harpune aus Verdauungsbläschen im Inneren von Abwehrzellen befreien können.


Mit Francisella novicida (pink) infizierte Makrophage. Das Bakterium baut dort seine Nano-Harpune zusammen (grün).

Universität Basel, Biozentrum

Tularämie: eine lebensbedrohliche Infektionskrankheit

Diese Infektionskrankheit kann durch Parasiten wie Zecken und Flöhe oder durch Tröpfcheninfektion vom Tier auf den Menschen übertragen werden. Ohne medikamentöse Behandlung kann die Krankheit sogar tödlich verlaufen. «Die Sterblichkeitsrate kann bis zu dreissig Prozent betragen», erklärt Broz. «Bereits ein Dutzend eingeatmeter Francisella-Bakterien reichen aus, um sich anzustecken.» Da der Erreger sehr infektiös ist und sich schnell über die Luft verbreitet, wurde er in das Arsenal der biologischen Kampfstoffe aufgenommen.

Infektionserreger mit eigener «Waffe»

Das Bakterium Francisella verfügt aber auch selbst über eine effiziente «Waffe» – das sogenannte Typ-6-Sekretionssystem (T6SS), welches wie eine Harpune funktioniert. Diese benötigt Francisella, um sich aus der «Gefangenschaft» der Fresszellen zu befreien. Denn die Abwehrzellen «fressen» in den Körper eingedrungene Erreger auf, schliessen sie im Zellinneren in kleinen Bläschen ein und verdauen sie. Mithilfe des T6SS kann sich Francisella jedoch aus diesen Verdauungsvesikeln befreien. So gelangt es schliesslich ins Zellplasma, den Ort, an dem es sich schnell vermehren kann.

Molekulare Harpune zur Befreiung aus «Gefangenschaft»

Die beiden Forschungsgruppen untersuchten nun, wie das T6SS bei Francisella aufgebaut ist und wie es funktioniert. Dabei stellte sich heraus, dass der Erreger die Bestandteile seiner Waffe recycelt. «Nach dem Abfeuern der Harpune wird sie sofort in ihre Einzelteile zerlegt. Diese verwendet das Bakterium sofort für den Bau einer neuen Harpune», erklärt Basler. «Mit ihrer Waffe stechen die Bakterien durch die Membran des Vesikels, in das sie eingeschlossen sind, und injizieren Giftproteine in das Innere der Immunzelle.» Diese bislang noch nicht beschriebenen Proteine zerstören anschliessend die Vesikelmembran. So können sich die Bakterien schliesslich selbst aus ihrer «Gefangenschaft» befreien und sich vor einer Verdauung retten.

Besitzen sie diese Proteine nicht, gibt es für sie kein Entkommen. Das T6SS sowie die Giftproteine sind wichtige Virulenzfaktoren, denn sie sind entscheidend für den Erfolg des Bakteriums bei einer Infektion. Sind die Erreger erst einmal ins Zellplasma entkommen, fängt der eigentliche Kampf erst an, da sie sich nun gegen die angeborene Immunabwehr des Wirtes behaupten müssen.

Originalbeitrag

Maj Brodmann, Roland F. Dreier, Petr Broz and Marek Basler
Francisella requires dynamic Type VI secretion system and ClpB to deliver effectors for phagosomal escape
Nature Communications (2017), doi: 10.1038/ncomms15853

Weitere Auskünfte

Prof. Dr. Marek Basler, Universität Basel, Biozentrum, Tel. +41 61 207 21 10, E-Mail: Mail: marek.basler@unibas.ch
Dr. Katrin Bühler, Universität Basel, Biozentrum, Kommunikation, Tel. +41 61 207 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Bakterien-befreien-sich-mit-m...

Olivia Poisson | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien schwärmen aus
17.01.2019 | Philipps-Universität Marburg

nachricht Forscher der TU Dresden finden neuen Ansatz für Therapien für neurodegenerative Erkrankungen
17.01.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics