Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ausgehungerte Zellen verdichten ihre DNA

10.11.2015

Wissenschaftler am Institut für Molekulare Biologie (IMB) haben erstmals die dramatischen Veränderungen der DNA in Zellen beobachtet, die nicht genug Sauerstoff und Nährstoffe erhalten. Dieser "ausgehungerte" Zustand ist typisch für einige der häufigsten Krankheiten wie Herzinfarkt, Schlaganfall und Krebs. Die Forschungsergebnisse der aktuellen Studie liefern neue Einblicke darüber, welche Schäden diese Krankheiten verursachen und könnten zur Entwicklung neuer Behandlungsmethoden beitragen.

Wenn ein Mensch einen Herzinfarkt oder einen Schlaganfall erleidet, wird die Blutzufuhr zu einem Teil seines Herzens oder Gehirns unterbrochen. Das führt dazu, dass die Zellen dort mit Sauerstoff und Nährstoffen unterversorgt sind. Dieser Zustand der Mangeldurchblutung, der auch als Ischämie bezeichnet wird, kann zu langfristigen, irreparablen Schäden führen. Ina Kirmes, Doktorandin in der Gruppe von Dr. George Reid am IMB, hat untersucht, was genau mit der DNA in diesen Zellen passiert, die von der Sauerstoff- und Nährstoffversorgung abgeschnitten sind.


Neue Mikroskopietechnik bietet bisher unerreichte Detailtiefe in der Beobachtung einer Zelle. Das Bild der DNA einer Zelle, aufgenommen mit der am IMB entwickelten neuen superauflösenden Mikroskopietechnik, zeigt die DNA in scharfen Details (links). Im Gegensatz dazu ist das herkömmliche Mikroskopiebild verschwommen und macht eine Darstellung der auffälligen Veränderungen in der DNA, die von den Forschern am IMB entdeckt wurden, unmöglich (rechts).

Quelle: A. Szczurek & I. Kirmes


Dramatische Effekte der Ischämie. Die Bilder zeigen DNA in einem Zellkern unter normalen (links) und ischämischen (recht) Bedingungen. Die am IMB entwickelte neue Technik für superauflösende Mikroskopie zeigt, dass sich die DNA zu ungewöhnlichen, engen Haufen verdichtet, wenn die Zellen nicht mit Sauerstoff und Nährstoffen versorgt sind.

Quelle: A. Szczurek & I. Kirmes

In einer gesunden Zelle sind große Teile der DNA offen zugänglich. Das bedeutet, dass Gene einfach abgelesen werden können, sodass die Zelle normal funktionieren kann. Forscher am IMB konnten jetzt zeigen, dass sich während einer Ischämie die Anordnung der DNA dramatisch verändert: Die DNA verdichtet sich. Die Gene in solchen kompakten Regionen können von der Zelle nicht mehr ausgelesen werden, ihre Aktivität ist damit stark reduziert. Falls die Blutversorgung nicht wieder hergestellt wird, fährt die Zelle schließlich ihren Betrieb herunter oder stirbt sogar. Wenn beispielsweise die Zellen im Herzen eines Menschen nicht mehr richtig funktionieren, hört dieser Teil des Herzmuskels auf, sich zusammenzuziehen, und das Herz versagt. Ganz ähnlich verhält es sich im Gehirn: Ist die Blutzufuhr zu Zellen unterbrochen und damit auch die Zufuhr von Nährstoffen, so sterben die Nervenzellen ab.

"Bei einem Schlaganfall und/oder bei einem Herzinfarkt passiert wahrscheinlich genau dies mit der DNA", erklärt Dr. Reid. "Da wir jetzt wissen, was [in der Zelle] geschieht, können wir nach Wegen suchen, dieser Verdichtung der DNA vorzubeugen."

Der Schlüssel zu dieser Entdeckung war eine enge Zusammenarbeit mit Aleksander Szczurek, gemeinsam mit Ina Kirmes Erstautor der Studie, der in der Gruppe von Prof. Dr. Christoph Cremer am IMB tätig ist. Die beteiligten Forscherinnen und Forscher nutzten eine neue Methode, mit der die DNA in der Zelle in bisher unerreichter Genauigkeit dargestellt werden kann, eine Weiterentwicklung der "superauflösenden Lichtmikroskopie". Hierbei werden blinkende Farbstoffe eingesetzt, die an die DNA binden und es somit den Forschern ermöglichen, die Lage von einzelnen Molekülen in Zellen nachzuverfolgen. Diese neue Technologie wurde in einem gesonderten Aufsatz beschrieben, der Anfang September 2015 im Journal Experimental Cell Research veröffentlicht wurde.


Veröffentlichungen:
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Christoph Cremer C, Reid G (2015). A transient ischemic environment induces reversible compaction of chromatin. Genome Biology, 16, 246

Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee HK, Roignant JY, Birk U, Dobrucki JW and Cremer C (2015). Localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution. Experimental Cell Research, doi: 10.1016/j.yexcr.2015.08.020

Weitere Informationen:
zur Forschung von Dr. George Reid: http://www.imb.de/reid.
zur Forschung von Prof. Dr. Christoph Cremer: http://www.imb.de/cremer

Über das Institut für Molekulare Biologie gGmbH
Das Institut für Molekulare Biologie gGmbH (IMB) ist ein Exzellenzzentrum der Lebenswissenschaften, das 2011 gegründet wurde. Die Forschung am IMB konzentriert sich auf drei topaktuelle Gebiete: Epigenetik, Entwicklungsbiologie und Genomstabilität. Das Institut ist ein Paradebeispiel für eine erfolgreiche Zusammenarbeit zwischen öffentlichen Einrichtungen und einer privaten Stiftung. Die Boehringer Ingelheim Stiftung hat 100 Millionen Euro für einen Zeitraum von 10 Jahren bereitgestellt, um die laufenden Kosten für die Forschung am IMB zu decken, das Land Rheinland-Pfalz noch einmal ca. 50 Millionen Euro für den Bau des hochmodernen Forschungsgebäudes. Weitere Informationen zum IMB finden Sie unter http://www.imb.de.

Boehringer Ingelheim Stiftung
Die Boehringer Ingelheim Stiftung ist eine rechtlich selbstständige, gemeinnützige Stiftung und fördert die medizinische, biologische, chemische und pharmazeutische Wissenschaft. Errichtet wurde sie 1977 von Hubertus Liebrecht, einem Mitglied der Gesellschafterfamilie des Unternehmens Boehringer Ingelheim. Mit ihrem Perspektiven-Programm "Plus 3" und den "Exploration Grants" für selbstständige Nachwuchswissenschaftler fördert die Stiftung bundesweit exzellente unabhängige Nachwuchsforschergruppen. Sie dotiert den internationalen Heinrich-Wieland-Preis sowie Preise für Nachwuchswissenschaftler. Die Boehringer Ingelheim Stiftung fördert für zehn Jahre den wissenschaftlichen Betrieb des 2011 eingeweihten Instituts für Molekulare Biologie (IMB) an der Johannes Gutenberg-Universität Mainz (JGU) mit 100 Millionen Euro. Seit 2013 fördert sie ebenfalls über zehn Jahre die Lebenswissenschaften an der JGU mit insgesamt 50 Millionen Euro. Weitere Informationen unter http://www.boehringer-ingelheim-stiftung.de.

Pressekontakt für weitere Informationen
Dr. Ralf Dahm, Direktor Wissenschaftliches Management
Institut für Molekulare Biologie gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
Telefon: +49 (0) 6131 39-21455, Fax: +49 (0) 6131 39-21421, E-Mail: press@imb.de


Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blockierung des Eisentransports könnte Tuberkulose stoppen
01.04.2020 | Universität Zürich

nachricht Universität Innsbruck entwickelt neuartiges Corona-Testverfahren
01.04.2020 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Blockierung des Eisentransports könnte Tuberkulose stoppen

01.04.2020 | Biowissenschaften Chemie

Universität Innsbruck entwickelt neuartiges Corona-Testverfahren

01.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics