Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ausgehungerte Zellen verdichten ihre DNA

10.11.2015

Wissenschaftler am Institut für Molekulare Biologie (IMB) haben erstmals die dramatischen Veränderungen der DNA in Zellen beobachtet, die nicht genug Sauerstoff und Nährstoffe erhalten. Dieser "ausgehungerte" Zustand ist typisch für einige der häufigsten Krankheiten wie Herzinfarkt, Schlaganfall und Krebs. Die Forschungsergebnisse der aktuellen Studie liefern neue Einblicke darüber, welche Schäden diese Krankheiten verursachen und könnten zur Entwicklung neuer Behandlungsmethoden beitragen.

Wenn ein Mensch einen Herzinfarkt oder einen Schlaganfall erleidet, wird die Blutzufuhr zu einem Teil seines Herzens oder Gehirns unterbrochen. Das führt dazu, dass die Zellen dort mit Sauerstoff und Nährstoffen unterversorgt sind. Dieser Zustand der Mangeldurchblutung, der auch als Ischämie bezeichnet wird, kann zu langfristigen, irreparablen Schäden führen. Ina Kirmes, Doktorandin in der Gruppe von Dr. George Reid am IMB, hat untersucht, was genau mit der DNA in diesen Zellen passiert, die von der Sauerstoff- und Nährstoffversorgung abgeschnitten sind.


Neue Mikroskopietechnik bietet bisher unerreichte Detailtiefe in der Beobachtung einer Zelle. Das Bild der DNA einer Zelle, aufgenommen mit der am IMB entwickelten neuen superauflösenden Mikroskopietechnik, zeigt die DNA in scharfen Details (links). Im Gegensatz dazu ist das herkömmliche Mikroskopiebild verschwommen und macht eine Darstellung der auffälligen Veränderungen in der DNA, die von den Forschern am IMB entdeckt wurden, unmöglich (rechts).

Quelle: A. Szczurek & I. Kirmes


Dramatische Effekte der Ischämie. Die Bilder zeigen DNA in einem Zellkern unter normalen (links) und ischämischen (recht) Bedingungen. Die am IMB entwickelte neue Technik für superauflösende Mikroskopie zeigt, dass sich die DNA zu ungewöhnlichen, engen Haufen verdichtet, wenn die Zellen nicht mit Sauerstoff und Nährstoffen versorgt sind.

Quelle: A. Szczurek & I. Kirmes

In einer gesunden Zelle sind große Teile der DNA offen zugänglich. Das bedeutet, dass Gene einfach abgelesen werden können, sodass die Zelle normal funktionieren kann. Forscher am IMB konnten jetzt zeigen, dass sich während einer Ischämie die Anordnung der DNA dramatisch verändert: Die DNA verdichtet sich. Die Gene in solchen kompakten Regionen können von der Zelle nicht mehr ausgelesen werden, ihre Aktivität ist damit stark reduziert. Falls die Blutversorgung nicht wieder hergestellt wird, fährt die Zelle schließlich ihren Betrieb herunter oder stirbt sogar. Wenn beispielsweise die Zellen im Herzen eines Menschen nicht mehr richtig funktionieren, hört dieser Teil des Herzmuskels auf, sich zusammenzuziehen, und das Herz versagt. Ganz ähnlich verhält es sich im Gehirn: Ist die Blutzufuhr zu Zellen unterbrochen und damit auch die Zufuhr von Nährstoffen, so sterben die Nervenzellen ab.

"Bei einem Schlaganfall und/oder bei einem Herzinfarkt passiert wahrscheinlich genau dies mit der DNA", erklärt Dr. Reid. "Da wir jetzt wissen, was [in der Zelle] geschieht, können wir nach Wegen suchen, dieser Verdichtung der DNA vorzubeugen."

Der Schlüssel zu dieser Entdeckung war eine enge Zusammenarbeit mit Aleksander Szczurek, gemeinsam mit Ina Kirmes Erstautor der Studie, der in der Gruppe von Prof. Dr. Christoph Cremer am IMB tätig ist. Die beteiligten Forscherinnen und Forscher nutzten eine neue Methode, mit der die DNA in der Zelle in bisher unerreichter Genauigkeit dargestellt werden kann, eine Weiterentwicklung der "superauflösenden Lichtmikroskopie". Hierbei werden blinkende Farbstoffe eingesetzt, die an die DNA binden und es somit den Forschern ermöglichen, die Lage von einzelnen Molekülen in Zellen nachzuverfolgen. Diese neue Technologie wurde in einem gesonderten Aufsatz beschrieben, der Anfang September 2015 im Journal Experimental Cell Research veröffentlicht wurde.


Veröffentlichungen:
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Christoph Cremer C, Reid G (2015). A transient ischemic environment induces reversible compaction of chromatin. Genome Biology, 16, 246

Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee HK, Roignant JY, Birk U, Dobrucki JW and Cremer C (2015). Localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution. Experimental Cell Research, doi: 10.1016/j.yexcr.2015.08.020

Weitere Informationen:
zur Forschung von Dr. George Reid: http://www.imb.de/reid.
zur Forschung von Prof. Dr. Christoph Cremer: http://www.imb.de/cremer

Über das Institut für Molekulare Biologie gGmbH
Das Institut für Molekulare Biologie gGmbH (IMB) ist ein Exzellenzzentrum der Lebenswissenschaften, das 2011 gegründet wurde. Die Forschung am IMB konzentriert sich auf drei topaktuelle Gebiete: Epigenetik, Entwicklungsbiologie und Genomstabilität. Das Institut ist ein Paradebeispiel für eine erfolgreiche Zusammenarbeit zwischen öffentlichen Einrichtungen und einer privaten Stiftung. Die Boehringer Ingelheim Stiftung hat 100 Millionen Euro für einen Zeitraum von 10 Jahren bereitgestellt, um die laufenden Kosten für die Forschung am IMB zu decken, das Land Rheinland-Pfalz noch einmal ca. 50 Millionen Euro für den Bau des hochmodernen Forschungsgebäudes. Weitere Informationen zum IMB finden Sie unter http://www.imb.de.

Boehringer Ingelheim Stiftung
Die Boehringer Ingelheim Stiftung ist eine rechtlich selbstständige, gemeinnützige Stiftung und fördert die medizinische, biologische, chemische und pharmazeutische Wissenschaft. Errichtet wurde sie 1977 von Hubertus Liebrecht, einem Mitglied der Gesellschafterfamilie des Unternehmens Boehringer Ingelheim. Mit ihrem Perspektiven-Programm "Plus 3" und den "Exploration Grants" für selbstständige Nachwuchswissenschaftler fördert die Stiftung bundesweit exzellente unabhängige Nachwuchsforschergruppen. Sie dotiert den internationalen Heinrich-Wieland-Preis sowie Preise für Nachwuchswissenschaftler. Die Boehringer Ingelheim Stiftung fördert für zehn Jahre den wissenschaftlichen Betrieb des 2011 eingeweihten Instituts für Molekulare Biologie (IMB) an der Johannes Gutenberg-Universität Mainz (JGU) mit 100 Millionen Euro. Seit 2013 fördert sie ebenfalls über zehn Jahre die Lebenswissenschaften an der JGU mit insgesamt 50 Millionen Euro. Weitere Informationen unter http://www.boehringer-ingelheim-stiftung.de.

Pressekontakt für weitere Informationen
Dr. Ralf Dahm, Direktor Wissenschaftliches Management
Institut für Molekulare Biologie gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
Telefon: +49 (0) 6131 39-21455, Fax: +49 (0) 6131 39-21421, E-Mail: press@imb.de


Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Haltbar und frisch - Neutronen zeigen Details des Prozesses der Gefriertrocknung
27.02.2020 | Technische Universität München

nachricht Wie Enzyme Zuckerbäume bauen
27.02.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bonner Mediziner etablieren weltweit neues, leicht tragbares Ultraschallsystem aus den USA für die Lehre am Krankenbett

27.02.2020 | Medizintechnik

Gegen multiresistente Tuberkulose-Erreger: Mit künstlicher Intelligenz neuen Wirkstoffkombinationen auf der Spur

27.02.2020 | Medizin Gesundheit

Mikro-Überlebenskünstler: Archaeen bewältigen biologische Methanisierung trotz Asche und Teer

27.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics