Röntgentomoskopie: Wie sich beimGefrierguss komplexe Strukturen bilden, lässt sich nun in 3D filmen

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.
(c) HZB/PSI

Mit Gefriergussverfahren lassen sich hochporöse und hierarchisch strukturierte Materialien herstellen, die eine große Oberfläche aufweisen. Sie eignen sich für unterschiedlichste Anwendungen, als Elektroden für Batterien, Katalysatormaterialien oder in der Biomedizin. Nun hat ein Team um Prof. Ulrike G. K. Wegst, Northeastern University, Boston, MA, USA, und Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin an der Swiss Light Source des Paul-Scherrer-Instituts mit dem neu entwickelten Verfahren der Röntgentomoskopie erstmals in Echtzeit und hoher Auflösung beobachtet, wie der Prozess der Strukturbildung beim Gefrieren abläuft. Als Modellsystem diente eine Zuckerlösung.

Gefriergussverfahren benötigen mehrere Schritte: Zunächst wird eine Substanz in einem Lösungsmittel gelöst oder aufgeschwemmt und daraufhin in einer Kühlzelle mit einer am Boden angelegten Kühlrate eingefroren (gerichtetes Gefrieren). Nach dem Gefrieren wird das kristallisierte Lösungsmittel durch Sublimation entfernt. Übrig bleiben die vormals gelöste Substanz und aufgeschwemmte Partikel, die die Zellwände einer komplexen, hochporösen Architektur bilden.

Gefriergegossene Werkstoffe lassen sich für viele Einsatzbereiche nutzen: Aufgrund ihrer enormen inneren Oberflächen eignen sie sich als Batterieelektroden oder Katalysatoren, ihre gerichtete Porenstruktur ermöglicht aber auch biomedizinische Anwendungen, zum Beispiel als Gerüststrukturen zur Regeneration von Nervenbahnen. Wie aber der Prozess der hierarchischen Strukturbildung beim Gefrieren im Detail abläuft, und wie sich die gewünschte wabenartige, gerichtete Porosität und die Zellwände mit ihren Oberflächenstrukturen bilden, blieb bisher im Dunkeln.

Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin hat zusammen mit seinem Team eine Methode entwickelt, mit der sich diese Prozesse genau beobachten lassen. „Mit der Röntgentomoskopie können wir den Mechanismus der Strukturbildung in situ mit hoher räumlicher und zeitlicher Auflösung abbilden und dabei sogar flüchtige Phänomene und Übergangsstrukturen beobachten“, erklärt der Physiker. Mit einem ultraschnellen Drehtisch, intensiver Röntgenstrahlung sowie einem extrem schnellen Detektor und Software für die rasche Auswertung der Röntgendaten hat das HZB-Team gemeinsam mit Kollegen an der Swiss Light Source des Paul-Scherrer-Instituts das Gefriergießen an einem Modellsystem untersucht und die hohe Leistungsfähigkeit der Methode bewiesen. „Für diese Studie haben wir eine neue Messzelle mit Sensoren entwickelt, um den Temperaturgradienten genau zu erfassen“, sagt Dr. Paul Kamm (HZB), Erstautor der Studie. Pro Sekunde entstand ein 3D-Tomogramm mit einer räumlichen Auflösung von 6 µm. Über 270 Sekunden ließ sich der gesamte Prozess des Gefrierens dokumentieren.

Prof. Ulrike G. K. Wegst von der Northeastern University, USA, hatte vorgeschlagen, als polymeres Modellsystem eine wässrige Zuckerlösung zu untersuchen, weil erstens wässrige Lösungen noch immer im Gefriergussverfahren dominieren, und zweitens sich ihr Verhalten gut rechnerisch simulieren lässt. „Wir konnten nun erstmals experimentell beobachten wie die Eiskristalle aus der Lösung gerichtet wachsen“, sagt Wegst. „Dabei dokumentieren die Aufnahmen, wie sich Instabilitäten beim Kristallwachstum bilden, und wie diese die Zuckerphase formen. Dabei entstehen charakteristische, organisch wirkende Strukturen, die an Quallen und Tentakel erinnern.“ Interessant ist auch, dass einige dieser Strukturen teilweise wieder verschwinden.

Wissenschaftliche Ansprechpartner:

Dr. Francisco Garcìa Moreno: garcia-moreno@helmholtz-berlin.de
Prof. Ulrike Wegst: u.wegst@northeastern.edu

Originalpublikation:

Advanced Functional Materials (2023): X‐Ray Tomoscopy Reveals the Dynamics of Ice Templating. Paul H. Kamm, Kaiyang Yin, Tillmann R. Neu, Christian M. Schlepütz, Francisco García‐Moreno, Ulrike G. K. Wegst.
https://doi.org/10.1002/adfm.202304738

http://www.helmholtz-berlin.de/

Media Contact

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer