Neues Verfahren zur zerstörungsfreien Rückgewinnung von Kathodenmaterial aus Lithium-Ionen-Batterien

Prof. Jörg Acker und die wissenschaftliche Mitarbeiterin Jana Ducke untersuchen eine Kathodenfolie, die aus einer Lithium-Ionen-Batterie eines Elektroautos nach dessen Demontage entnommen wurde. Foto: BTU Cottbus - Senftenberg

Bis zu 780 Kilogramm schwer ist ein Lithium-Ionen-Akku für ein Elektrofahrzeug der Oberklasse, das damit eine Reichweite von bis zu 600 Kilometern erzielen kann. Diese enorme Leistungsfähigkeit beruht auf der chemischen Zusammensetzung und dem Design der als Kathode und Anode eingesetzten Materialien.

Das gilt insbesondere für das Kathodenmaterial, eine hochwertige Lithium-Nickel-Mangan-Cobalt-Sauerstoffverbindung, an die besondere Anforderungen hinsichtlich ihrer Zusammensetzung und Verarbeitung gestellt werden. Nur so lässt sich die Funktionsweise beim Laden und Entladen des Akkus gewährleisten.

Neben seinen wichtigen funktionalen Eigenschaften ist das Kathodenmaterial nicht nur teuer, sondern gehört auch zu den seltenen Rohstoffen wie Kobalt oder Nickel. Eine Rückgewinnung der im Kathodenmaterial enthaltenen Elemente ist wirtschaftlich sinnvoll und verringert die Abhängigkeit von Rohstoffimporten.

Bisher entwickelte Recyclingverfahren beruhen auf einer vollständigen Zerstörung der in den Akkus enthaltenen Funktionsmaterialien, indem sie in energieaufwendigen Hochtemperaturprozessen aufgeschmolzen oder nach einer kompletten Vorzerkleinerung in chemischen Behandlungsschritten zu Metallsalzlösungen umgesetzt werden.

Beide Vorgehensweisen erfordern neben einem enormen Energieeinsatz weitere, aufwendige Rückgewinnungs- und Reinigungsverfahren, um am Ende die reinen Metallsalze für die Herstellung von neuem Lithium-Nickel-Mangan-Cobalt-Oxid zu erhalten.

Ein industriegeführtes Konsortium stellt sich im Rahmen des Forschungsprojektes die Aufgabe, Kathodenmaterial ohne Qualitätsminderung rückzugewinnen. Das Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) seit Januar 2019 gefördert. Von BTU-Seite sind die Fachgebiete Physikalische Chemie und Aufbereitungstechnik am Projekt beteiligt.

Der Projektleiter an der BTU, der Chemiker Prof. Dr. Jörg Acker, beschreibt das Vorhaben so: „Unser Ziel ist es, gemeinsam mit dem Recycling- und Logistik-Unternehmen ERLOS ein aktuell bewährtes Pilotverfahren zur Industriereife zu führen. Mit dem Verfahren werden Lithiumtraktionsakkus teilautomatisiert demontiert und die enthaltenen Batteriezellen anschließend in ihre Bestandteile, wie Kathode und Anode, zerlegt.

Das begehrte Kathodenmaterial befindet sich auf Trägerfolien aus Aluminium und wird ebenfalls automatisert durch ein besonders schonendes Verfahren von den Folien abgetrennt und aufgefangen.“

Weitere Akkubestandteile, wie es zum Beispiel der Elektrolyt mit seinen Lithium-Komponenten ist, halten die Forschenden ohne Gefährdung von Mensch und Umwelt emissions- und verlustfrei zurück. Für die BTU hält das Projekt eine Reihe von besonderen Herausforderungen bereit:

„Unser Team arbeitet daran, das Kathodenmaterial ohne eine Qualitätsminderung zurückzugewinnen, die beispielsweise durch mechanische Schädigungen, chemische Veränderungen am Material oder ungewollt ablaufende Nebenreaktionen hervorgerufen werden kann. Auch das ursprüngliche Design des Materials muss unbedingt erhalten bleiben, da es entscheidend für die Leistungsfähigkeit ist. Nicht mehr funktionsfähiges Kathodenmaterial wird abgetrennt“, so Prof. Dr. Acker.

Aus dem rückgewonnenen Kathodenmaterial werden Testbatterien verschiedener Größe hergestellt, die vom Projektpartner HOPPECKE, einem Spezialisten für Industriebatteriesysteme, intensiv untersucht werden. Von den Messungen werden Aussagen über die Leistungsfähigkeit des rückgewonnenen Materials und über notwendige Verbesserungen im Prozess abgeleitet

. Das Projekt soll zur Großserien-Rückgewinnung von qualitativ hochwertigem Kathodenmaterial führen. Durch die Herstellung von sogenannten Second-use-Lithium-Akkus wird es für Pkws, aber auch andere industrierelevante Anwendungen, wie beispielsweise Gabelstapler, Flurförderzeuge oder stationäre Speicher wieder einsetzbar.

Pressekontakt:

Kristin Ebert
Stabsstelle Kommunikation und Marketing
T +49 (0) 355 69-2115
E kristin.ebert(at)b-tu.de

Prof. Dr. rer. nat. habil. Jörg Acker
Physikalische Chemie
T +49 (0) 3573 85-839
E Joerg.Acker(at)b-tu.de

https://www.b-tu.de/fg-physikalische-chemie/
https://www.b-tu.de/materialchemie-bs/
https://www.b-tu.de/materialchemie-ms/

Media Contact

Ralf-Peter Witzmann idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer