Lithium-Gewinnung aus Wasser

Lithiumgewinnung aus Meerwasser
(c) INM / Volker Presser

Ein neues kontinuierliches und kostengünstiges Verfahren hat die Weltmeere im Visier.

Forschende des INM – Leibniz-Institut für Neue Materialien in Saarbrücken haben in Zusammenarbeit mit Wissenschaftlern der Chinesischen Akademie der Wissenschaften in Shanghai ein neues elektrochemisches Verfahren zur Gewinnung von Lithium-Ionen aus Meerwasser entwickelt. In ACS Energy Letters stellt das deutsch-chinesische Team um Prof. Volker Presser das Verfahren vor, das zum einen mit wenig Energie-Input auskommt und zum anderen eine kontinuierliche Abtrennung von Lithium gewährleistet.

Lithium zählt derzeit zu den begehrtesten Rohstoffen und die Nachfrage nach dem weißen Gold wird weiter steigen. Allein die Umstellung von Verbrennungsmotoren auf Elektroantriebe für Fahrzeuge wird Lithium zu einer knappen Ressource machen. Zwar lagern beachtliche Reserven in chilenischen Salzwüsten oder in australischen Minen, doch langfristig müssen neue Quellen erschlossen werden, um den wachsenden Bedarf zu bedienen. Ideal sind dabei regionale Lithium-Quellen, da sich durch verkürzte Transportwege auch der CO2-Fußabdruck von Lithium-Technologien deutlich verbessern ließe.

Ein Erfolg versprechender Ansatz ist auch das Recycling von Lithium-Ionen-Batterien, das allerdings erst dann einen nennenswerten Ertrag bringt, wenn genügend Batterien an ihrem Lebensende angekommen sind. Die Extraktion des Alkalimetalls aus wässrigen Lösungen ist eine weitere Methode, an der intensiv geforscht wird. So gibt es einige Ansätze, Lithium aus Thermalwasser oder sogar aus Grubenwasser zu gewinnen. Und nicht zuletzt stellen die Weltmeere ein schier unerschöpfliches Reservoir dar. Zwar ist die Lithiumkonzentration im Meerwasser äußerst gering, doch in Summe bringen es die 1,4 Milliarden Kubikkilometer Wasser auf einen Lithiumgehalt von 230 Milliarden Tonnen.

Basis des in ACS Energy Letters vorgestellten Verfahrens zur Lithiumgewinnung aus wässrigen Lösungen ist eine Kombination aus einer Redox-Fluss-Batterie, einer Polymermembran für den Austausch von Anionen und zwei lithiumselektiven keramischen Membranen (LISICON). Im Gegensatz zu herkömmlichen Batterien speichern Redox-Fluss-Batterien Energie durch Oxidation und Reduktion eines flüssigen Elektrolyten und nicht durch eine elektrochemische Reaktion in festen Elektroden. Der flüssige Zustand hat den Vorteil, dass der Redox-Elektrolyt gepumpt und so das System kontinuierlich betrieben werden kann. Je nachdem, wie groß das System sein muss, kann die Größe der Elektrolyt-Tanks einfach angepasst werden.

Die elektrochemische Zelle besteht aus zwei Kammern: eine für die elektrochemische Oxidation und eine zweite für die Reduktion. Zwischen diesen beiden Kammern befindet sich eine Ionentauschmembran. Das Neue am INM-System ist, dass sich zwischen den beiden Kammern für den Redox-Elektrolyten zwei weitere Kanäle für den Zustrom von lithiumhaltigem Wasser und zur Anreicherung von Lithium-Ionen befinden. Damit kommt das Gesamtsystem auf vier Kammern. Die enorme Selektivität von Lithium-Ionen verdankt das System den keramischen LISICON-Membranen, die andere Kationen, wie Natrium- oder Kalium-Ionen, effektiv blockieren.

„Man kann sich unser Verfahren wie einen im Kreis fahrenden Bus vorstellen. Lithium-Ionen, z. B. aus Meerwasser, werden durch die Reduktion einer Rotkali-Lösung in der einen Kammer aufgenommen und bei der Oxidation in einer anderen Kammer wieder abgegeben“, erläutert Prof. Presser und ergänzt: „Dieses ‚Ein-und-Aussteigen‘ hat viele Vorteile: Zum einen können wir das System kontinuierlich laufen lassen, ganz wie jede andere Redox-Fluss-Batterie. Das ist sehr wichtig für eine beständige Lithium-Ernte. Und zum anderen können wir damit verschiedene Lithium-Ionen-Quellen nutzen.“ Stefanie Arnold, Doktorandin in der Energie-Materialien-Gruppe des INM, führt weiter aus: „Das Verfahren eignet sich für natürliches Wasser, beispielsweise aus den Ozeanen oder aus Hydrothermalquellen. Wir können es aber auch für Grubenwasser oder für die Extraktion von Lithium-Ionen beim hydrometallurgischen Recyclen von gebrauchten Batterien nutzen“.

Im nächsten Schritt soll das elektrochemische System weiter verbessert werden. „Derzeit ist die keramische LISICON-Membran im Fokus unserer Optimierungsstrategie. Dünnere und auf anderen Materialien basierende Lithium-Ionen-Membranen werden den Prozess deutlich schneller ablaufen lassen und ergeben geringere Kosten bei gleichzeitig verbesserter mechanischer Stabilität“, so Volker Presser. Eine solche Technologie kann perspektivisch einen wichtigen Beitrag zur Lithium-Kreislaufwirtschaft leisten.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Volker Presser
Leiter des Programmbereichs Energie-Materialien des INM
Tel.: ++49 (0)681 9300 244
E-Mail: volker.presser@leibniz-inm.de

Originalpublikation:

Lei Wang, Stefanie Arnold, Panyu Ren, Qingsong Wang, Jun Jin, Zhaoyin Wen and Volker Presser
A redox flow battery for continuous and energy-effective lithium recovery from aqueous solution; ACS Energy Lett. 2022, 7, XXX, 3539–3544
https://doi.org/10.1021/acsenergylett.2c01746

www.leibniz-inm.de

Media Contact

Christine Hartmann Presse- und Öffentlichkeitsarbeit
INM - Leibniz-Institut für Neue Materialien gGmbH

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Durchbruch bei CRISPR/Cas

Optimierte Genschere erlaubt den stabilen Einbau von großen Genen. Großer Fortschritt an der CRISPR-Front. Wissenschaftlern des Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es erstmals gelungen, sehr effizient große Gen-Abschnitte stabil und…

Rittal TX Colo: Das neue Rack für Colocation Data Center

Rittal TX Colo: Flexibel, skalierbar und zukunftssicher Mit der zunehmenden Digitalisierung und künftig auch immer mehr KI-Anwendungen steigt der Bedarf an Rechenleistung signifikant – und damit boomt der Colocation-Markt. Unternehmen…

Partner & Förderer