Leistungsstärkstes Dual-Comb-Spektrometer entwickelt

Zwei Pulszüge von Lasern mit leicht unterschiedlichen zeitlichen Abständen stammen vom dünnscheibenförmigen Lasermedium in der Mitte des Bildes. Die Arbeit wurde kürzlich in Nature Communications veröffentlicht
(c) Eric Schambroom
Forschende der Professur für Lasertechnologie und Spektroskopie sowie vom Max-Planck-Institut für Quantenoptik München und der Ludwig-Maximilians Universität München haben das weltweit leistungsstärkste Dual-Comb-Spektrometer entwickelt, das den Weg für viele Anwendungen in der Atmosphärenforschung und der biomedizinischen Diagnostik, unter anderem auch für die Krebsfrüherkennung, ebnet. Das Verfahren wurde in einem Artikel der Zeitschrift Nature Communications veröffentlicht.
Das Herzstück des Systems besteht aus einer speziellen Art von laseraktivem Medium, einer dünnen Kristallscheibe, und einem Laserresonator, der dieses Medium umgibt. „Der Schlüssel zu unserer Dual-Comb-Laserquelle liegt in ihrer Schlichtheit”, erklärt Teamleiter Univ.-Prof. Dr. Oleg Pronin, Professur für Lasertechnologie und Spektroskopie. „Anstatt zwei voneinander getrennte Laser zu verwenden, die jeweils aktiv stabilisiert und aneinandergekoppelt werden müssen, stammen unsere beiden Laserstrahlen aus demselben Laserresonator, was zu einer hervorragenden gegenseitigen Stabilität führt.”
Der Laser mit zwei Ausgängen liefert eine mehr als zehnfach höhere Leistung als alle bisherigen Dual-Comb-Laserquellen. Dies ebnet den Weg für viele Anwendungen in der Atmosphärenforschung und in der biomedizinischen Diagnostik. Anwendungen in der Grundlagenforschung – wie die präzise Vermessung atomarer Spektrallinien in bisher unzugänglichen Wellenlängenbereichen und Kernuhren, den potenziell genauesten Uhren in unserem Universum – kommen dank dieser neuartigen Laserquelle in Reichweite.
Die Dual-Comb-Laserquelle wandelt extrem schnell oszillierende elektrische Felder des Lichts (10^15 Schwingungen pro Sekunde) in den Bereich der Radiofrequenzen (10^6 Schwingungen pro Sekunde) um, wo das Signal mit moderner Elektronik in Echtzeit erfasst werden kann. Dieses Verfahren wird mit zwei überlagerten Pulszügen von Laserpulsen mit leicht unterschiedlichen zeitlichen Abständen realisiert. Es bietet eine hohe Empfindlichkeit und sub-pikometer Auflösung mit schnellen Erfassungszeiten im Millisekundenbereich.
Die erreichten Spitzenleistungen im Megawattbereich ebnen mittels Frequenzkonversion den Weg zur hochauflösenden Spektroskopie im tiefen ultravioletten Frequenzbereich – ein Spektralbereich, der von den heutigen Spektrometern nur mit unzureichender Auflösung abgedeckt wird. Im Vergleich zu komplexen, aktiv stabilisierten Lasersystemen vereinfacht die kompakte Größe des Lasersystems Anwendungen wie beispielsweise Spektroskopie der Atmosphäre und hochpräzise Entfernungsmessungen enorm.
Wissenschaftliche Ansprechpartner:
Univ.-Prof. Dr. Olog Pronin, Professur für Lasertechnologie und Spektroskopie, E-Mail oleg.pronin@hsu-hh.de
Originalpublikation:
Fritsch, K., Hofer, T., Brons, J. et al. Dual-comb thin-disk oscillator. Nat Commun 13, 2584 (2022). https://doi.org/10.1038/s41467-022-30078-0
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge

CircEl-Paper: Recycelbare Elektronik auf Papierbasis
Jährlich fallen in der Europäischen Union (EU) Milliarden Tonnen Elektroschrott an. Mit einem neuartigen Ansatz könnte das neue EU-Projekt „CircEl-Paper“ den Recyclingprozess für Elektronik in Zukunft nachhaltig verbessern. Elektronik, die…

Optischer Effekt ermöglicht atomare Quantencomputer neuer Dimension
Quantencomputer könnten bisher unlösbare Aufgaben knacken, lassen sich aber nicht ohne weiteres zu der dafür nötigen Größe ausbauen. Eine neue Technik eines Darmstädter Physikerteams könnte diese Hürde überwinden. Darmstädter Physiker…

Bessere Gesundheitsversorgung dank KI
Die Komplexität in der Medizin nimmt ständig zu, nicht zuletzt aufgrund neuer Technologien. Künstliche Intelligenz (KI, englisch AI) soll Ärztinnen und Ärzten helfen, die Informationsflut handhabbar zu machen und die…