Turbo für den Datenstrom

In einem europäischen Forschungsprojekt erarbeiteten Industrie und Institute kostengünstige Materialien und Verfahren für die elektrische, optische und opto-elektrische Aufbau- und Verbindungstechnik. Damit lässt sich nicht nur der Datentransport im Computer beschleunigen.

Was macht einen Computer schnell? Die Chips und Prozessoren. Heute sind sie schon mit Gigahertzleistung zu bekommen. Mehrere Gigabyte-grosse Datenpakete, etwa die Bilddaten von Spielfilmen, werden optisch in Glasfasern weltweit via Internet übertragen. Doch kaum am Netzwerkknoten oder Computer angekommen, verzögert sich die Weiterleitung – und das trotz der dort kurzen Entfernungen. »Die limitierenden Faktoren für die Rechnergeschwindigkeit oder wie es heißt, die Taktrate, sind Board und Stecker im Computer«, erklärt Dr. Michael Popall vom Fraunhofer-Institut für Silicatforschung ISC in Würzburg. Auf dem zentralen Panel sitzen die einzelnen Chips, die für Leistungsfähigkeit und Prozessgeschwindigkeit des Rechners zuständig sind. »Problem ist die Verbindung der Chips untereinander und mit dem Board. Mit konventioneller Technik können die Hunderte von Kontakten der Chips nicht direkt mit dem Board vernetzt werden. Deshalb sind sie im Chip-Gehäuse spinnenbeinartig verlängert. Das erhöht den Platzbedarf und damit die elektrischen Wege. Andererseits kann es bei hoher Integrationsdichte – viele Chips auf engem Raum – gerade bei höherfrequenten Signalen zu Übersprechen, also zu Störungen kommen.«

Schnellere Wege für den PC-internen und -externen Datentransport suchte ein europäischer Forschungsverbund. Im Projekt DONDOMCM arbeiteten zunächst sieben Partner zusammen; im Anschlussprojekt DONDODEM dann bereits ein Konsortium von 15 Partnern aus Industrie und Forschungsinstituten. Gemeinsame Aufgabe: die Entwicklung kostengünstiger Materialien für die elektrische, optische und opto-elektrische Aufbau- und Verbindungstechnik. Ein zusätzlicher, sehr wesentlicher Aspekt war, die Herstellungstechnik für eine großflächige Massenproduktion umzusetzen. Das ISC koordiniert nicht nur den Verbund, sondern lieferte auch die Lösung: Materialien auf der Basis von ORMOCER®en.

ORMOCER®e sind eine extrem leistungsfähige Materialklasse, deren Eigenschaften sich durch »chemical design« gezielt einstellen lassen. Sie benötigen im Gegensatz zu alternativen Materialien nur geringe Aushärtetemperaturen. Zudem besitzen sie für ihren Einsatz in der Aufbau- und Verbindungstechnik eine hohe optische Transparenz und eignen sich daher zum Leiten von Licht. Sie isolieren sehr gut und sind sowohl thermisch als auch chemisch ausreichend robust. Damit halten sie den Standardfertigungstechniken der Mikroelektronik und Leiterplattentechnik stand.

»Über mehrere Verfahrensschritte entstehen in Mehrlagentechnik auf kostengünstigen Polymerplatten leistungsfähige 3-D-Leiterbahnnetze«, fasst Dr. Michael Popall den Prozess zusammen. »Unsere Technologiepartner erzielen Leiterbahnenbreiten und Durchkontaktierungen im Bereich kleiner als 50 µm. Auf diese Feinstkontakte werden dann die Prozessoren und Speicherchips gesetzt und kontaktiert.« Ein Projektergebnis ist eines der kleinsten PentiumTM-Multi-Chip-Module der Welt. Ein Demonstrator, dessen kompakte Mehrlagentechnik die Basis für Entwicklungen z. B. in Handys, Notebooks oder Organizern sein kann.

Darüber hinaus lassen sich mit ORMOCER®-Mehrlagen auch optische Wellenleiter kostengünstig herstellen und in die elektrischen Module integrieren. So werden äußerst kompakte opto-elektrische Boards für die schnelle Datenleitung möglich. Selbst für das Ein- und Auskoppeln der optischen Datenströme hat das Forschungskonsortium eine Lösung parat: Sie bauen in ORMOCER®-Schichten diffraktive Optiken ein. Diffraktive Strukturen können ähnlich wie Linsen Licht bündeln und führen. Im Gegensatz zu Linsen werden sie mittels einfacher Prägeverfahren hergestellt, die aufgrund eines im Projekt entwickelten neuen Verfahrens mit der Mehrlagentechnik kompatibel sind. »In diesem Teil des Projekts haben wir alle von der Erfahrung unserer Kollegen vom Fraunhofer IOF in Jena profitiert. Sie haben die Innovationen für die Umsetzung der diffraktiven Optiken in die ORMOCER®-Schichten und die dazugehörige Fertigungstechnik geliefert«, berichtet Projektleiter Popall. »Am Fraunhofer IZM in Berlin wurde die Mehrlagentechnik weiter entwickelt und alle Testmodule der Partner auf ihre Zuverlässigkeit untersucht.«

Parallel erfolgten auch erste Entwicklungen, um die neuen Materialien in der Hochfrequenztechnik zu nutzen, beispielsweise für den Einsatz in Handys oder als Radarabstandsmesser. Und auch die Bluetooth-Technologie – verschiedenste elektronische Geräte kommunizieren über Funk miteinander – soll mit Hilfe der preiswerten und kompakten Schaltungen unterstützt und vorangebracht werden.

»Ohne die langjährige, intensive europaweite Kooperation wäre das Projekt nicht zu diesem erfolgreichen Ziel gekommen«, fasst Dr. Popall zusammen. »Eine ganz wesentliche Rolle spielten dabei die motivierten Mitarbeiter der kompetenten Partner und natürlich die Fördermittel der EU«.

Die Projektpartner:

Fraunhofer-Institute für

Silicatforschung ISC, Würzburg

Angewandte Optik und Feinmechanik IOF, Jena

Zuverlässigkeit und Mikrointegration IZM, Berlin

ACREO AB, Schweden

Bull S.A., Frankreich

Chalmers University of Technology, Schweden

CSEM Swiss Center for Electronics and Microtechnology S.A., Schweiz

Ericsson, Schweden

Friedrich-Schiller-Universität, Jena

MicroResistTechnology, Berlin

Motorola Ltd., Großbritannien

Robert Bosch GmbH, Stuttgart

SÜSS MicroTec, München

Technische Universität, Berlin

Thales Airborne Systems, Frankreich

W.C. Heraeus GmbH, Hanau

Media Contact

Dr. Michael Popall Presseinformation

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuer Algorithmus klassifiziert Hautkrankheiten

Deep-Learning-Algorithmus mit verbesserter Diagnosegenauigkeit Dermatologinnen und Dermatologen klassifizieren Hautkrankheiten in der Regel auf der Grundlage mehrerer Datenquellen. Algorithmen, die diese Informationen zusammenführen, können die Klassifizierung unterstützen. Ein internationales Forschungsteam hat…

Lösungen für das Laserauftragschweißen

Das Fraunhofer-Institut für Lasertechnik ILT in Aachen und die TRUMPF Laser- und Systemtechnik GmbH aus Ditzingen haben eine Kooperationsvereinbarung abgeschlossen. Sie wollen die Zusammenarbeit im Bereich Laserauftragschweißen intensivieren und den…

Weltweit größtes Fischbrutgebiet in der Antarktis entdeckt

Forschende weisen etwa 60 Millionen Nester antarktischer Eisfische auf 240 Quadratkilometern im Weddellmeer nach. Nahe dem Filchner-Schelfeis im Süden des antarktischen Weddellmeers hat ein Forschungsteam das weltweit größte bislang bekannte…

Partner & Förderer