Abbau von Chloramine in öffentlichen Bädern – Wellness für die Nase

Der Chlorominator nutzt moderne UV-Technik um Chloramine photochemisch abzubauen und das Schwimmbadwasser zu entkeimen (Bild: Grünbeck Wasseraufbereitung GmbH, Höchstädt/Donau)<br>

Einfach mal entspannen. Den Körper und die Seele im warmen Wasser tragen lassen. Im Whirlpool der Hektik des Tages entfliehen. Freudiges Kinderjuchzen an der Wasserrutsche und die Kleinsten planschen vergnügt im wohlig temperierten Babybecken…

Moderne öffentliche Bäder sind heute häufig weit mehr als nur reine Sportstätten, sie sind Orte der Entspannung und des Wohlbefindens für Groß und Klein. Der typische „chlorige“ Hallenbadgeruch, der einem früher schon beim Betreten der Schwimmhalle in die Nase gestochen ist, und rote, gereizte Kinderaugen passen nicht mehr zum Wellness-Gedanken moderner Badelandschaften.

Chloramine als Auslöser
In öffentlichen Bädern wird üblicherweise meist Chlor zur Desinfektion eingesetzt. Das klassische Desinfektionsmittel lässt sich nicht komplett ersetzen, da sonst die benötigte hohe Desinfektionsleistung und notwendige Keimtötungsgeschwindigkeit nicht eingehalten werden kann. Im laufenden Badebetrieb entstehen durch das freie Chlor und die ins Wasser eingetragenen Belastungsstoffe, beispielsweise Hautschuppen, Chloramine wie NH2Cl (Monochloramin) als Nebenprodukte des Desinfektionsprozesses mit Chlor. Diese Chloramine, auch „gebundenes Chlor“ genannt, sind verantwortlich für den typischen Hallenbadgeruch und für Augen- und Schleimhautreizungen bei Wasserkontakt. Die Konzentration der Chloramine ist von mehreren Faktoren abhängig: Wassertemperatur, Beckenvolumen, Anzahl der Badegäste und deren Aktivitätsgrad und das Verfahren zur Wasseraufbereitung. Prinzipiell gilt, je mehr Badegäste, je höher deren Aktivität, je höher die Wassertemperatur und je kleiner das Beckenvolumen desto größer die Menge an entstehenden Chloraminen. Der Grenzwert für gebundenes Chlor beträgt nach der DIN 19643 0,2 mg pro Liter.

Photochemische Reaktion mit UV-Strahlung
Eine gute Möglichkeit, die Konzentration der Desinfektionsnebenprodukte im Wasserkreislauf zu reduzieren ist der sogenannte Chlorominator des Wasseraufbereitungsspezialisten Grünbeck in Höchstädt a. d. Donau.

In der Anlage wird das gebundene Chlor photochemisch abgebaut. Mit Hilfe von hochenergetischen UV-Strahlen werden die Molekularbindungen der Chloramine aufgebrochen, und es entstehen unbedenkliche Stoffe wie Chlorid und Stickstoff. Konstruktiv besteht die Anlage im Wesentlichen aus einem Druckrohr mit zwei sich überlappenden UV-Bestrahlungsbereichen. Im Zuflussbereich finden – je nach Kapazität der Anlage – bis zu sechs 400 Watt UV-Mitteldrucklampen des Speziallichtquellen-Herstellers Heraeus Noblelight Verwendung. Auf Grund des polychromatischen Lampenspektrums im für die Anwendung wirksamen UV-C Spektralbereichs von 200 bis 280 nm und einer spezifischen elektrischen Strahlerleistung von mehr als 45 W/cm können die UV-Lichtquellen die Molekülbindungen der Chloramine aufbrechen und dadurch das gebundene Chlor im Ba-dewasser abbauen. Da dieser Prozess ausschließlich durch den Einsatz von UV-Lichttechnik zustande kommt und keinerlei Zusatzstoffe benötigt, ist der Chloraminabbau sehr umweltfreundlich. Die Abwärme wird nahezu komplett dem Badewasser zugeführt, was den Prozess energieeffizient und damit wirtschaftlich macht. Der hohe Strahlungsfluss der UV-Mitteldruck-Lampen erlaubt kleine Baugrößen und damit kompaktere Wasseraufbereitungs-Anlagen. So messen die 400 Watt UV-Mitteldruck-Lampen in der Länge nur 140 mm bei einem Durchmesser von rund 16 mm.

UV-Technologie reduziert Chloreinsatz
Neben dem Abbau der Chloramine sorgt der Einsatz von UV-Lampen auch für eine Verringerung des notwendigen Chlors. Die Behandlung von Wasser mit UV-Strahlung ist ein sehr wirksamer physikalischer Prozess, um Wasser zu desinfizieren und Schadstoffe abzubauen. Die energiereichen UVC-Strahlen im Bereich von 200 bis 280 nm zerstören sehr wirkungsvoll Bindungen der DNA-Helix. Damit inaktivieren die UV-Strahlen in Sekunden die Zellen der im Wasser befindlichen Krankheitserreger wie Viren, Bakterien und Kleinstlebewesen, die auch keine Resistenzen gegen das UV-Licht entwickeln können. Damit wird die Keimzahl im Schwimmbadwasser zuverlässig reduziert und es kann weniger Chlor verwendet werden.

Um diesen Effekt noch weiter zu verstärken, befinden sich im Chlorominator neben den UV-Mitteldruck-Lampen auch bis zu 12 Heraeus Noblelight Niederdruck-Amalgam-Lampen im Auslass der Bestrahlungskammer. Diese sind mit ihrem quasi monochromatischen Spektrum von 254 nm und einem hohen Wirkungsgrad von ca. 35 % sehr gut für die Desinfektion des Schwimmbadwassers geeignet. Im Vergleich zu herkömmlichen Quecksilber-Niederdruck-Lampen bieten Amalgam-Lampen bei gleicher Geometrie eine deutlich höhere Leistung. Während Quecksilber-Niederdruck-Lampen eine spezifische elektrische Leistung von 0,3 bis 0,5 W/cm Leuchtlänge aufweisen, kommen Amalgam-Lampen auf bis zu 6 W/cm. Grund dafür ist das unterschiedliche Druck-Temperatur-Verhalten. Die Quecksilber-Niederdruck-Lampe erreicht bei rund 40 °C ihren optima-len Quecksilberdampfdruck von 0,8 Pa und damit ihre maximale UVC-Strahlung. Eine höhere oder niedrigere Temperatur durch mehr oder weniger elektrische Eingangsleistung führt zu einer reduzierten UVC-Strahlung. Die Amalgam-Lampe erreicht ihren optimalen Dampfdruck bei ebenfalls 0,8 Pa, allerdings bei einer korrespondierenden Temperatur von 90 – 130 °C (abhängig vom Typ). Das höhere Temperaturniveau ermöglicht eine größere spezifische elektrische Leistung der Amalgam-Lampe und damit eine höhere UVC-Strahlung pro cm Leuchtlänge. Dadurch fällt die Baugröße bei analoger Leistung im Vergleich zur Quecksilber-Lampe deutlich kleiner aus. Anlagenbauer können ihre Geräte kleiner dimensionieren, da sie weniger Lampen und Hüllrohre und damit weniger Platz benötigen. Ein weiteres Einsparpotenzial ergibt sich auch aus der geringeren Zahl von benötigten Vorschaltgeräten.

Aktuelles Praxisbeispiel
Der Chlorominator mit seiner fortschrittlichen UV-Technik kommt bereits in einer Vielzahl von Badestätten zum Einsatz. So wurde vor Kurzem auch der Neubau des Kurmittelhauses Bad Liebenstein (Thüringen) mit zwei Chlorominatoren ausgestattet. Das neue Kurhaus, das im Frühjahr 2009 eröffnet werden soll, verfügt unter anderem über ein Schwimmbad, Erlebnisduschen, eine Saunalandschaft mit Eisbrunnen und Tauchbecken und Entspannungsbäder mit dem Bad Liebensteiner Heilwasser. Das älteste Kur- und Heilbad Thüringens – bereits im Jahre 1601 bescheinigte man dem Wasser der Casimirquelle seine heilende Wirkung – setzt auf moderne Wasseraufbereitung mit UV-Technik. Mitteldruck- und Amalgam-Niederdruck-Lampen reduzieren die auftretenden Chloramine und unterstützen die Wasserentkeimung – so können sich die Badegäste ungetrübt entspannen, sich von Kopf bis Fuß wohlfühlen und sich bereits auf den nächsten Schwimmbadbesuch freuen.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China, Australien und Puerto Rico, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2007 einen Jahresumsatz von 90 Millionen € auf und beschäftigte weltweit 666 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit über 155jähriger Tradition. Unsere Geschäftsfelder umfassen die Bereiche Edelmetalle, Sensoren, Dental- und Medizinprodukte, Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von 3 Mrd. € und einem Edelmetall-Handelsumsatz von 9 Mrd. € sowie weltweit mehr als 11.000 Mitarbeitern in über 100 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Für weitere Informationen wenden Sie sich bitte an:

Hersteller:
Heraeus Noblelight GmbH
Heraeusstraße 12-14
D-63450 Hanau
Kontakt: Erik Roth
Tel +49 6181/35-9379, Fax +49 6181/35-16 9926
E-Mail: hng-disinfection@heraeus.com
Redaktion:
Thomas Lödel, Dipl.-Wirtschaftsing. (FH)
Heraeus Noblelight GmbH,
Tel +49 6181/35-80
E-Mail: thomas.loedel@heraeus.com

Media Contact

Thomas Lödel Heraeus Noblelight GmbH

Weitere Informationen:

http://www.heraeus-noblelight.com

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Röntgenanalyse ohne Zweifel

Vier Jahrzehnte währendes Rätsel kosmischer Röntgenstrahlung gelöst. Ein internationales Team unter Leitung des Heidelberger MPl für Kernphysik hat mit einem hochpräzisen Experiment ein Jahrzehnte währendes Problem der Astrophysik gelöst: Die…

Urknall-Forschung

ALICE-Experiment am CERN startet Testbetrieb mit Blei-Ionen – Goethe-Uni koordinierte Detektor-Umbau. Den Materiezustand kurz nach dem Urknall, das sogenannte Quark-Gluon-Plasma, erforscht das ALICE-Experiment am Teilchenbeschleunigerzentrum CERN in Genf, wo Blei-Ionen…

Meilenstein für die Lasertechnik

Freie-Elektronen-Laser, der von plasmabeschleunigten Teilchen angetrieben wird. Sie fungieren als wertvolle Forschungswerkzeuge: Freie-Elektronen-Laser (FELs) erzeugen ungemein intensive Lichtpulse. Insbesondere im Röntgenbereich lassen sich damit unterschiedlichste Materialien detailliert analysieren und ultraschnelle…

Partner & Förderer