Neuer Ansatz für Gentherapie gegen Herzschwäche

Dr. Janika Viereck, Professor Dr. Dr. Thomas Thum, Anne Bührke und Dr. Christian Bär (von links). Quelle: Karin Kaiser / MHH

Zu viel Herz ist ungesund. Denn eine zu starke Zunahme der Muskelmasse bedeutet, dass unser Pumporgan leichter überlastet wird. Häufigster Auslöser für eine solche Herzmuskel-Hypertrophie ist Bluthochdruck. Der macht es dem Herzen schwerer, die Aortenklappe zu öffnen und Blut in den Körper zu pumpen.

Um das auszugleichen, verdickt sich der Herzmuskel, wird aber gleichzeitig immer unelastischer, und die Pumpleistung lässt nach. Dadurch wird der Körper nicht mehr ausreichend mit Sauerstoff versorgt.

Bislang können Therapien das geschwächte Herz nur entlasten und Beschwerden wie Kurzatmigkeit oder chronische Müdigkeit lindern. Jetzt haben Forscherinnen und Forscher aus dem Institut für Molekulare und Translationale Therapiestrategien der Medizinischen Hochschule Hannover (MHH) einen Weg entdeckt, den Krankheitsverlauf rückgängig zu machen.

Die Studie unter der Leitung von Professor Dr. Dr. Thomas Thum, Direktor des Instituts, und seinem Mitarbeiter Dr. Christian Bär ist im renommierten Fachmagazin European Heart Journal veröffentlicht worden. Erstautorinnen sind Dr. Janika Viereck und Anne Bührke.

Biomolekül H19 ist der Schlüssel zur verbesserten Herzfunktion

Der Schlüssel zur Therapie ist eine sogenannte lange, nicht-codierende RNA (lncRNA) mit Namen H19. Sie regelt bestimmte Wachstums- und Entwicklungsprozesse im Körper. In ihrer Studie haben die Wissenschaftlerinnen und Wissenschaftler beobachtet, dass H19 in geschwächten Herzen offenbar verloren geht – bei Mäusen und Schweinen ebenso wie bei Menschen mit verschiedenen Herzerkrankungen.

„Durch eine gezielte Gentherapie mit H19 konnten wir im Mausmodell diesen Mangel ausgleichen, die Herzfunktion deutlich verbessern und den Krankheitsverlauf sogar teilweise rückgängig machen“, erklärt Janika Viereck.

Für die Therapie hat das Forschungsteam einen umgebauten Virus-Vektor genutzt, der als Genfähre die Erbinformation für H19 gezielt in die Herzmuskelzellen schleust, wo der Bauplan für die lncRNA dann direkt umgesetzt wird. Das Besondere: H19 hat sich im Laufe der Evolution in seiner Struktur kaum verändert. So erzielte nicht nur das mausspezifische H19-Gen einen therapeutischen Effekt in den Versuchsmäusen.

Die heilende Wirkung konnte auch durch Gabe des menschlichen H19-Gens nachgewiesen werden. „Deshalb hoffen wir, dass unsere Methode auch im Menschen gut funktionieren wird“, sagt Studienleiter Bär. Die Ergebnisse dienen als wichtige als Grundlage für eine mögliche weiterführende klinische Entwicklung der Gentherapie.

Unterstützt wurde die Studie durch die Deutsche Forschungsgemeinschaft im Rahmen der Klinischen Forschungsgruppe FOR 311, die an der MHH Behandlungsstrategien und reparative Therapien bei schweren Herz- und Lungenkrankheiten entwickelt.

Weitere Informationen erhalten Sie bei Professor Dr. Dr. Thomas Thum unter Telefon (0511) 5325272 oder thum.thomas@mh-hannover.de.

Die Originalpublikation „Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy” ist online verfügbar auf der Seite des European Heart Journal unter https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa519.

Media Contact

Stefan Zorn idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close