Wenn Teilchen gleichzeitig nach rechts und nach links fallen

Ein Bleistift, der auf der Spitze steht, wird durch eine noch so kleine Störung in die eine oder die andere Richtung kippen. In der Quantenwelt ist es prinzipiell möglich, dass die Teilchen eines Systems gleichzeitig nach links und nach rechts fallen.

Dieses „und“ – die sogenannte Quantenverschränkung der Teilchen – vom klassischen „oder“ zu unterscheiden, stellt eine experimentelle Herausforderung für die Forschung dar. Wissenschaftler des Kirchhoff-Instituts für Physik der Universität Heidelberg haben nun eine neue und allgemeine Methode entwickelt, die den Nachweis der Verschränkung für beliebige Zustände von großen atomaren Systemen erlaubt. Die Forschungsergebnisse auf dem Gebiet der Quantenmetrologie wurden in „Science“ veröffentlicht.

In seinen Experimenten nutzte das Team unter der Leitung von Prof. Dr. Markus Oberthaler den klassisch instabilen Zustand eines ultrakalten atomaren Gases, eines sogenannten Bose-Einstein-Kondensats. Dabei handelt es sich um den extremen Aggregatzustand eines Systems nicht unterscheidbarer Teilchen, die sich überwiegend im selben quantenmechanischen Zustand befinden.

Die Heidelberger Forscher verwendeten ein Gas aus rund 500 Atomen mit Temperaturen von 0,00000001 Kelvin über dem absoluten Temperaturnullpunkt. Nach kurzer Zeit entwickelt sich daraus ein System mit hoher Teilchenverschränkung.

Um diesen „Und“-Zustand mit seinen besonderen quantenmechanischen Eigenschaften experimentell nachweisen zu können, musste das Team eine Vielzahl dieser atomaren Systeme unter gleichen Bedingungen bei jeweils verschiedenen Einstellungen des Laboraufbaus realisieren.

„Dieses Vorgehen erforderte Messungen über mehrere Wochen, in denen die Schwankungen des von uns eingesetzten Magnetfelds unter ein Zehntausendstel des Erdmagnetfelds reduziert werden mussten“, erläutert der Erstautor der Studie, Helmut Strobel.

Eine zweite Herausforderung stellte die richtige Analyse der Messungen dar. Dazu mussten neue statistische Konzepte entwickelt werden. Ziel war es, aus den Daten der Messungen den für die Quantenmetrologie relevanten Informationsgehalt herauszufiltern.

Diese sogenannte Fisher-Information, die nach dem Genetiker und Statistiker Ronald A. Fisher benannt ist, quantifiziert auf eindeutige und allgemeine Weise die sensitive Abhängigkeit des jeweiligen quantenmechanischen Zustands von den metrologisch relevanten Messgrößen.

Bei einem atomaren Bose-Einstein-Kondensat dieser Größe ist dies mit herkömmlichen Verfahren nicht möglich, wie Markus Oberthaler erläutert. Die neue Methode ist darüber hinaus auf noch größere Systeme anwendbar. „Wir können damit beliebige experimentelle Quantenzustände daraufhin untersuchen, ob sie sich für präzisere Messungen eignen als klassisch möglich“, so Prof. Oberthaler. „Dabei handelt es sich um ein hochaktuelles Thema auf dem Gebiet der Quantenmetrologie.“

Markus Oberthaler leitet am Kirchhoff-Institut für Physik die Arbeitsgruppe Synthetische Quantensysteme. An den Forschungsarbeiten waren Wissenschaftler des Forschungszentrums Quantum Science and Technology in Arcetri (QSTAR) und des European Laboratory for Non-Linear Spectroscopy (LENS) beteiligt.

Informationen im Internet:
http://www.kip.uni-heidelberg.de/matterwaveoptics

Originalpublikation:
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler: Fisher information and entanglement of non-Gaussian spin states. Science 25 July 2014: Vol. 345 no. 6195 pp. 424-427, doi: 10.1126/science.1250147

Kontakt:
Prof. Dr. Markus Oberthaler
Kirchhoff-Institut für Physik
Telefon (06221) 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Media Contact

Marietta Fuhrmann-Koch idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mehr Prozess- und Produktinnovationen in Deutschland als im EU-Durchschnitt

Mehr als jedes 3. Unternehmen (36 %) in Deutschland hat zwischen 2018 und 2020 (aktuellste Zahlen für die EU-Länder) neue Produkte entwickelt, Neuerungen von Wettbewerbern imitiert oder eigene Produkte weiterentwickelt….

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Partner & Förderer