Was die reflektierte Strahlung von Exoplaneten verraten könnte

Simulierte Ansichten eines erdähnlichen Exoplaneten. Links das „normale“ Bild, rechts das Ergebnis des Kieler Simulationsverfahrens, das auch die Polarisation der Planetenstrahlung miteinbezieht.
© Moritz Lietzow, Sebastian Wolf

Kieler Astrophysiker entwickeln Simulationsverfahren für die zukünftige Untersuchung von Planeten außerhalb unseres Sonnensystems

Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde. Hatte man vorher nur darüber spekulieren können, ob unser Sonnensystem mit seinen acht Planeten einzigartig sei, sind in der Zwischenzeit über 4.000 solcher sogenannten Exoplaneten entdeckt worden. Weiterhin unbeantwortet ist jedoch die Frage, ob es Leben in den Planetensystemen um andere Sterne gibt.

Ein Forschungsteam aus dem Institut für Theoretische Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) hat jetzt ein umfangreiches Simulationsverfahren entwickelt, das Rückschlüsse auf die Eigenschaften von Exoplaneten aus der von ihnen reflektierten Strahlung zulässt. Es schafft die Grundlage für zukünftige Observatorien und Beobachtungsinstrumente, mit denen man Antworten auf die Frage nach Leben auf anderen Planeten einen Schritt näherkommen könnte. Ihre neue Methode stellten die Forschenden kürzlich in einem Artikel in der Fachzeitschrift Astronomy & Astrophysics vor.

„Die Antwort auf die Frage nach Leben außerhalb unseres Sonnensystems hätte sicherlich weitreichendere Folgen für unser kosmisches Selbstverständnis als alles andere, was wir bisher über das Universum herausgefunden haben“, sagt Sebastian Wolf, Professor für Astrophysik an der CAU. Zusammen mit seiner Arbeitsgruppe „Stern- und Planetenentstehung, Exoplaneten“ gehört er zu den Astrophysikerinnen und Astrophysikern weltweit, die die Suche nach Antworten intensiv vorbereiten. Als vielversprechendster Weg gilt die Untersuchung der Atmosphäre der Exoplaneten. Da die Entfernungen jedoch viel zu groß sind, um Raumsonden zu den Exoplaneten zu schicken, bleibt nur die Möglichkeit, die Strahlung der Exoplaneten mit entsprechenden Observatorien und Beobachtungsinstrumenten zu beobachten.

Reflektierte Strahlung verrät physikalische und chemische Eigenschaften der Planeten

Planeten reflektieren die Strahlung ihres Zentralsterns, den sie – wie unsere Erde die Sonne – umkreisen. Daraus lassen sich Informationen über die physikalischen und chemischen Eigenschaften ihrer Atmosphäre, Landmassen und Ozeane ableiten. Sie könnten Antworten geben auf Fragen wie: Besitzt der Planet eine Atmosphäre und woraus besteht sie, wie ausgeprägt ist sie? Gibt es Wolken und überdecken sie den gesamten Planeten? Sind die Landmassen wüstenartig oder mit Schnee oder Vegetation bedeckt? Existieren Ozeane und Wellen, die Einblicke in die Wechselwirkung von Atmosphäre und Ozean geben könnten? Hat der Planet Satelliten oder Ringe?

Doch nicht nur die Entschlüsselung dieser Informationen gestaltete sich bislang als schwierig. Auch das schwache Licht der Exoplaneten, die zusätzlich auch noch von ihren Zentralsternen überstrahlt werden, erschwert die Beobachtung. Vor diesem Hintergrund hat Moritz Lietzow im Rahmen seiner Doktorarbeit bei Professor Sebastian Wolf ein Simulationsverfahren entwickelt, mit dem sich neben der reflektierten Strahlung auch ihre Polarisation auf bisher umfangreichste und genaueste Weise berechnen lässt.

„Die Polarisation ist eine Eigenschaft des Lichtes, die für das menschliche Auge im Gegensatz zu Farben und Helligkeiten nicht sichtbar ist. Im Alltag kommt man mit dem Begriff ‚Lichtpolarisation‘ am ehesten beim Kauf einer Sonnenbrille oder einer Fotoausrüstung in Berührung, wenn es darum geht, den Kontrast zu erhöhen und Spiegelungen zu verringern“, erklärt Lietzow, Erstautor des Artikels. Für die Erforschung von Exoplaneten wird die Polarisation in Zukunft eine wichtige Rolle spielen, da in ihr Eigenschaften des von ihm reflektierten Lichtes verschlüsselt sind. „Das wiederum lässt Rückschlüsse auf die grundlegende Beschaffenheiten von Exoplaneten zu, die uns ansonsten verborgen blieben.“

Neues Simulationsverfahren könnte Untersuchungen an Exoplaneten entscheidend vorantreiben

Auch ein anderes Problem soll mit dem neuen Verfahren entschärft werden: Häufig lässt die Analyse des einfachen Lichtspektrums keine eindeutigen Aussagen zu. Zieht man die Polarisation als zweiten Faktor hinzu, sollen in Zukunft klare Aussagen zu der Beschaffenheit der Oberfläche und Atmosphäre von Exoplaneten möglich werden.

„Noch steckt die tatsächliche Beobachtung extrasolarer Planeten im polarisierten Licht in den Kinderschuhen. Das hier entwickelte Simulationsverfahren kann aber eine wichtige Doppelrolle einnehmen und so die Entwicklung dieses Forschungsgebietes entscheidend vorantreiben“, so Wolf. Zum einen wird es Vorhersagen zu dem erwarteten Polarisationssignal von Exoplaneten erlauben. Hieraus lassen sich Vorgaben für den Bau neuer, speziell für diese Messungen designter Beobachtungsinstrumente ableiten. Zum anderen wird hiermit die Grundlage für die Analyse zukünftiger Beobachtungen geschaffen, mit der man der Antwort nach Leben auf Exoplaneten – mindestens – etwas näherkommen wird, so die Überzeugung des Kieler Forschungsteams.

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/de/pressemitteilungen/2021/046-exoplaneten-1a.jpg
Bildunterschrift: Simulierte Ansichten eines erdähnlichen Planeten außerhalb unseres Sonnensystems mit Wolken, Landmassen und Ozeanen. Links ist das „normale“ Bild des Planeten zu sehen, rechts das Ergebnis des neuen Kieler Simulationsverfahrens. Es bezieht auch die Polarisation der Planetenstrahlung mit ein und enthält so noch weitere Informationen über dessen Beschaffenheit.
© Moritz Lietzow, Sebastian Wolf

http://www.uni-kiel.de/de/pressemitteilungen/2021/046-exoplaneten-1b.jpg
Bildunterschrift: Wird derselbe Planet beim Umlauf um seinen Zentralstern jetzt seitlich beleuchtet, ist in der linken Abbildung eine leicht rötliche Färbung zu erkennen, ein Phänomen ähnlich unserem Sonnenuntergang. Durch die Veränderung der Beleuchtungssituation ändert sich auch die polarisierte Strahlung des Planeten (rechts), was weitere Schlüsse auf seine Eigenschaften zulässt und eine wichtige Rolle bei der Untersuchung von Exoplaneten spielen wird.
© Moritz Lietzow, Sebastian Wolf

http://www.uni-kiel.de/de/pressemitteilungen/2021/046-exoplaneten-2a.jpg
Bildunterschrift: Simulierte Ansichten eines Gasriesen mit Wolkenbändern und einem Ringsystem. Links ist das „normale“ Bild des Planeten zu sehen, während rechts der Planet im polarisierten Licht gezeigt ist.
© Moritz Lietzow, Sebastian Wolf

http://www.uni-kiel.de/de/pressemitteilungen/2021/046-exoplaneten-2b.jpg
Bildunterschrift: Wird der Gasriese eher von der Seite beleuchtet, ist das Ringsystem nur schwach zu erkennen. Ganz anders erscheinen der so beschienene Ring und Planet im polarisierten Licht rechts. Die verschiedenen Erscheinungsbilder des Planeten bei unterschiedlichen Beleuchtungsverhältnissen erlauben Rückschlüsse auf die physikalischen und chemischen Eigenschaften seiner Atmosphäre und des Rings.
© Moritz Lietzow, Sebastian Wolf

Wissenschaftliche Ansprechpartner:

Professor Sebastian Wolf
Arbeitsgruppe „Stern- und Planetenentstehung, Exoplaneten
Institut für Theoretische Physik und Astrophysik
E-Mail: wolf@astrophysik.uni-kiel.de
Tel: +49 431 880-4107

Originalpublikation:

Originalpublikation:
Three-dimensional continuum radiative transfer of polarized radiation in exoplanetary atmospheres, M. Lietzow, S. Wolf and R. Brunngräber
Astronomy & Astrophysics, 645 (2021) A146, DOI: https://doi.org/10.1051/0004-6361/202038932

Weitere Informationen:

http://www.uni-kiel.de/de/detailansicht/news/046-exoplaneten – Link zur Meldung
http://www.kinsis.uni-kiel.de – Website des Forschungschwerpunkts KiNSIS (Kiel Nano, Surface and Interface Science) der Christian-Albrechts-Universität zu Kiel (CAU)

Media Contact

Claudia Eulitz Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer