Veröffentlichung in „Nano Letters“ – Magneto-Optik bei Raumtemperatur

Rasterkraftmikroskopische Aufnahme der untersuchten Nanobänder. (Bildnachweis: UDE)<br>

Bei der Erforschung der hierzu benötigten magneto-optischen Materialien ist einer Arbeitsgruppe vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) ein entscheidender Schritt gelungen. Ihre Ergebnisse erschienen jüngst in der renommierten Fachzeitschrift „Nano Letters“.

Heutzutage basiert die dauerhafte Datenspeicherung auf den magnetischen Eigenschaften von Metallen. Die ultraschnelle Informationsverarbeitung im Chip hingegen verwendet eine andere Materialklasse, die Halbleiter. Silizium ist deren prominentestes Beispiel. Gelingt es, Halbleitern eine magnetische Funktionalität aufzuprägen, wären Bauelemente möglich, die Informationen speichern und verarbeiten und dabei weniger Energie verbrauchen als heutige Komponenten. Der kommerzielle Einsatz solcher „Wundermaterialien“ ist allerdings noch Zukunftsmusik.
In einer Kooperation der Arbeitsgruppe um Prof. Dr. Gerd Bacher vom Center for Nanointegration Duisburg-Essen (CENIDE) und der Arbeitsgruppe um Prof. Taeghwan Hyeon von der Universität Seoul in Südkorea gelang allerdings ein wichtiger Fortschritt in diesem zukunftsträchtigen Forschungsfeld.

Das Team um die gebürtige Brasilianerin Rachel Fainblat, Doktorandin bei Prof. Bacher, hat für seine Untersuchungen chemisch hergestellte Streifen aus Selen und Cadmium verwendet – Bänder, die nur wenige Nanometer breit und einige Mikrometer lang sind und denen winzige Mengen von Mangan beigemischt sind. Die elektronischen und optischen Eigenschaften werden durch den Halbleiter Cadmiumselenid bestimmt, die magnetischen Eigenschaften durch die Manganatome im Kristall. Entscheidend für die Anwendungen ist nun, wie diese Eigenschaften miteinander verknüpft sind. Diese Kopplung wird durch zwei Konstanten beschrieben, deren Abhängigkeit von der Größe der Nanostrukturen in der Literatur heftig umstritten ist.

Fainblats Ziel war es nun, diese Kopplungsstärke zu bestimmen und das Potenzial dieser ungewöhnlichen Nanostrukturen für Anwendungen bei Raumtemperatur zu erforschen.

Dazu hat die 29-Jährige optische Messmethoden eingesetzt und mit verschieden starken Magnetfeldern und unterschiedlichen Anregungswellenlängen experimentiert. Aus den experimentellen Ergebnissen konnte sie auf die Stärke der Kopplung zwischen Ladungsträgern und magnetischen Dotieratomen in den Nanobändern zurückschließen.

„Weil wir die Übergänge aus zwei verschiedenen Energiebändern, also vereinfacht ausgedrückt verschiedenen Energieniveaus, bestimmt haben, konnten wir als erste beide Kopplungskonstanten unabhängig bestimmen und zeigen, dass eine der beiden Konstanten in der Tat in Nanostrukturen stark verändert ist“, berichtet Fainblat. Zusätzlich – und für Anwendungen extrem wichtig – konnte sie nachweisen, dass die Nanobänder auch bei Raumtemperatur magneto-optische Funktionalität zeigen. Vorherige Untersuchungen bezogen sich immer auf extrem tiefe Temperaturen.

„Aber eine Platine, die erst in flüssigem Stickstoff gekühlt werden muss, damit sie funktioniert, ist für die Routineanwendung schlicht untauglich.“ Was die untersuchten Nanobänder zusätzlich attraktiv für industrielle Anwendungen macht, ist ihre einfache und flexible Prozessierbarkeit – auch auf flexiblen Substraten wie z. B. Folien.

Wie wichtig ihre Arbeit für künftige magneto-optische Technologien ist, zeigt die Tatsache, dass Fainblat für ihre Veröffentlichung auf der größten Konferenz im Bereich der Halbleiterphysik (International Conference on the Physics of Semiconductors) mit dem Preis „Young Scientist Best Paper Award“ ausgezeichnet wurde.

DOI: 10.1021/nl302639k

Redaktion und weitere Informationen: http://www.cenide.de
Birte Vierjahn, CENIDE, Tel. 0203/379-8176, birte.vierjahn@uni-due.de

Media Contact

Katrin Koster idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Eine optische Täuschung gibt Einblicke ins Gehirn

Yunmin Wu erforscht, wie wir Bewegung wahrnehmen können. Inspiriert durch ein Katzenvideo, kam sie auf die elegante Idee, die Wasserfall-Illusion in winzigen Zebrafischlarven auszulösen. Im Interview erzählt die Doktorandin vom…

Globale Analyse über effektive und topographische Wassereinzugsgebiete

Forschende legen erste globale Analyse vor, wie effektive und topographische Wassereinzugsgebiet voneinander abweichen Topographisch skizzierte Wassereinzugsgebiete sind eine räumliche Einheit, die sich an den Formen der Erdoberfläche orientieren. In ihnen…

Strukturbiologie – Das Matrjoschka-Prinzip

Die Reifung der Ribosomen ist ein komplizierter Prozess. LMU-Wissenschaftler konnten nun zeigen, dass sich dabei die Vorläufer für die kleinere Untereinheit dieser Proteinfabriken regelrecht häuten und ein Hüllbestandteil nach dem…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close