Ultraschnelle Elektronenmessung liefert wichtige Erkenntnisse für Solarindustrie

In the FLASH I experimental hall "Albert Einstein".
Heiner Müller-Elsner / DESY

Mit einem neuen Verfahren analysieren Physiker der TU Bergakademie Freiberg in Kooperation mit Forschenden aus Berkeley (USA) und Hamburg erstmals die Prozesse in einem Modellsystem für organische Solarzellen innerhalb von Femtosekunden bis ins Detail. Die Ergebnisse lassen sich zur Entwicklung hochleistungsfähiger und effizienter Solarzellen nutzen.

Der Schlüssel sind ultraschnelle Lichtblitze, mit denen das Team um Dr. Friedrich Roth am FLASH in Hamburg, dem weltweit ersten Freie-Elektronen-Laser im Röntgenbereich, arbeitet. „Die besonderen Eigenschaften dieser Röntgenquelle haben wir uns zu Nutze gemacht und mittels der zeitaufgelösten Röntgen-Photoemissionsspektroskopie (TR-XPS) erweitert.

Diese Methode basiert auf dem äußeren Photoeffekt, für dessen Erklärung Albert Einstein 1921 den Nobelpreis für Physik erhielt. So konnten wir erstmals direkt die spezifische Ladungstrennung und anschließende Prozesse beim Auftreffen von Licht auf ein Modellsystem, wie beispielsweise eine organische Solarzelle, analysieren. Außerdem konnten wir die Effizienz der Ladungstrennung in Echtzeit ermitteln“, erklärt Dr. Roth vom Institut für Experimentelle Physik der TU Bergakademie Freiberg.

Mit Photon-Science zu besseren Solarzellen

Im Gegensatz zu bisherigen Verfahren konnten die Forschenden einen vorher nicht beobachteten Kanal zur Ladungstrennung identifizieren. „Mit unserer Messmethodik können wir eine zeitlich aufgelöste, atomspezifische Analyse durchführen. Damit erhalten wir einen Fingerabdruck, der dem zugehörigen Molekül zugeordnet werden kann. So sehen wir, wann die durch den optischen Laser angeregten, Elektronen am Akzeptor-Molekül ankommen, wie lang sie dableiben und wann beziehungsweise wie sie wieder verschwinden“, erläutert Prof. Serguei Molodtsov das Messverfahren. Er leitet die Arbeitsgruppe „Strukturforschung mit Freie-Elektronen-Röntgenlasern (XFELs) und Synchrotronstrahlung“ am Freiberger Institut für Experimentelle Physik und ist ein wissenschaftlicher Direktor am European X-ray Free Electron Laser (EuXFEL).

Schwachstellen analysieren und Quanteneffizienz steigern

Die Echtzeit-Analyse und die Messung interner Parameter sind wichtige Grundlagenforschung, die sich vor allem die Solarindustrie zu Nutze machen kann. „Mit unseren Messungen ziehen wir wichtige Rückschlüsse, an welchen Grenzflächen, freie Ladungsträger gebildet werden oder verloren gehen und somit die Leistung von Solarzellen schwächen“, ergänzt Dr. Roth. Mit den Erkenntnissen der Freiberger Forschenden lassen sich so beispielsweise Optimierungsmöglichkeiten auf molekularer Ebene oder im Bereich der Materialwissenschaft ableiten und die Quanteneffizienz neu entstehender photovoltaischer und photokatalytischer Systeme optimieren. Die Quanteneffizienz beschreibt das Verhältnis des eingestrahlten Lichtes zum Photonenstrom (Strom der generiert wird). In einer aktuellen Fachpublikation in der Zeitschrift Nature Communications (https://www.nature.com/articles/s41467-021-21454-3) veröffentlichte das Team die Ergebnisse .

Röntgenlaserforschung an der TU Bergakademie Freiberg

Materialforschung mit XFELs wird an der TU Freiberg schon seit über 7 Jahren vorangetrieben. Seit 2018 besteht dazu eine bilaterale Kooperationsvereinbarung mit dem weltweit größten Röntgenlaser, dem European XFEL in Schenefeld bei Hamburg. Dieser bietet seit 2017 völlig neue Forschungsmöglichkeiten für Wissenschaft und Industrie. In einer Spezialvorlesungsreihe mit dem Titel „Materialforschung mit Freie-Elektronen-Röntgenlasern (XFELs)“ erhalten Freiberger Studierende zudem direkt vor Ort in Schenefeld Einblicke in den Aufbau und die Anwendung der neuesten Generation von Röntgen-Lichtquellen sowie deren vielseitigen Anwendungsmöglichkeiten im Rahmen der Werkstoffforschung vermittelt.

Wissenschaftliche Ansprechpartner:

Prof. Serguei Molodtsov, Tel. 040/ 8998-5779 und Dr. Friedrich Roth, Tel. 03731/ 39-2865

Originalpublikation:

Roth, F., Borgwardt, M., Wenthaus, L. et al. Direct observation of charge separation in an organic light harvesting system by femtosecond time-resolved XPS. Nat Commun 12, 1196 (2021). https://doi.org/10.1038/s41467-021-21454-3

Weitere Informationen:

https://tu-freiberg.de/exphys/strukturforschung-mit-xfel-und-synchrotronstrahlun…

Media Contact

Luisa Rischer Pressestelle
Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen

Heidelberger Wissenschaftlern gelingt Defekt-Kontrolle durch neuen Reaktionsweg. Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere…

Spritzguss von Glas

Freiburger Forschenden gelingt schnelle, kostengünstige und umweltfreundliche Materialfertigung. Von Hightech-Produkten im Bereich Optik, Telekommunikation, Chemie und Medizin bis hin zu alltäglichen Gegenständen wie Flaschen und Fenstern – Glas ist allgegenwärtig….

Radikalischer Angriff auf lebende Zellen

Durch Mikrofluidik gezielt die Oberfläche von Zellen mit freien Radikalen stimulieren. Lassen sich kleine, abgegrenzte Bereiche auf der Zellmembran chemisch manipulieren? Mit einer raffinierten mikrofluidischen Sonde haben Wissenschaftler:innen Zellen gezielt…

Partner & Förderer