Totale Mondfinsternis: Beobachtung der Erde als Transitplanet

Die Sonne vom Tycho-Krater auf dem Mond aus gesehen. Während die Sonne hinter dem Nordpazifik untergeht, verschwindet ihre Scheibe bei einer Mondfinsternis vollständig hinter der Erde. Credit: AIP/Strassmeier/Fohlmeister

Zieht ein Exoplanet vor seinem Stern vorüber, scheint ein Teil des Sternenlichts durch die Atmosphäre des Planeten. Obwohl der Einfluss des Planeten auf das Sternenlicht nur sehr gering ist, enthält es auch das chemische und physikalische Signal seiner Atmosphäre.

Die Messung der atmosphärischen Bestandteile wird in der Astrophysik als Transmissionsspektroskopie bezeichnet. Sie ist eine relativ neue, aber erfolgsversprechende Methode. Bereits eine Vielzahl von Exoplanet-Transiten ließen sich damit nachweisen.

„Die Untersuchungen finden jedoch bisher nur Anwendung bei übergroßen Jupiter-ähnlichen Planeten, die ihren Stern sehr nah umkreisen. Noch mehr sind wir freilich an Transits von erdähnlichen Planeten interessiert und daran, ob wir komplexere molekulare Signaturen, die möglicherweise sogar auf Leben hindeuten, nachweisen können“, berichtet der leitende Autor der jetzt veröffentlichten Studie, Klaus Strassmeier, Direktor am Leibniz-Institut für Astrophysik in Potsdam (AIP).

„Eine totale Mondfinsternis, die sich von unserem eigenen Mond aus gesehen als totale Sonnenfinsternis darstellt, ist aber nichts anderes als ein Transit unserer eigenen Erde vor der Sonnenscheibe und indirekt beobachtbar.“
Das Sonnenlicht, das durch die Erdatmosphäre dringt, bevor es der Mond zurück zur Erde reflektiert, wird als Erdschein bezeichnet.

Die biologische Aktivität auf der Erde hat viele Nebenprodukte wie Sauerstoff und Ozon in Verbindung mit Wasserdampf, Methan und Kohlendioxid. Diese biogenen Moleküle lassen sich in den Atmosphären anderer Planeten bei optischen und nahinfraroten Wellenlängen nachweisen.

Erdscheinbeobachtungen erlauben, die Existenz biogener und verwandter chemischer Elemente mit denselben Techniken für einen bewohnbaren Planeten zu überprüfen, die ansonsten zur Beobachtung von Sternen mit sehr großen Planeten verwendet werden. Sie sind somit ein idealer Test für zukünftige Studien entfernter erdähnlicher Planeten mit der neuen Generation extrem großer Teleskope.

Im Januar 2019 ereignete sich eine totale Mondfinsternis, bei der sich der Mond sich um das 20.000-fache verdunkelte. Für die Beobachtungen wurde daher die Lichtsammelfähigkeit des 11,8 m Large Binocular Teleskops (LBT) in Arizona benötigt. Darüber hinaus war die hohe spektrale Auflösung des Instruments PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) erforderlich, um den erwarteten Einfluss der Erdatmosphäre vom normalen Sonnenspektrum zu trennen.

„PEPSI hat bereits bedeutende Beiträge zur Untersuchung von Exoplaneten geleistet, indem es deren Transit vor ihrer Sonne beobachtet hat.“ fügt Christian Veillet, Direktor des LBT-Observatoriums, hinzu.

„Die Beobachtung der Erde als Exoplanet dank einer totalen Mondfinsternis vom LBT-Standort in Arizona und die Ergänzung von Polarimetrie zur exquisiten Auflösung des PEPSI-Spektrographen führten zum Nachweis von Natrium, Kalzium und Kalium in der Erdatmosphäre.“

Prof. Dr. Klaus G. Strassmeier, 0331-7499-223, kstrassmeier@aip.de

Klaus G. Strassmeier, Ilya Ilyin, Engin Keles, Matthias Mallonn, Arto Järvinen, Michael Weber, Felix Mackebrandt, and John M. Hill, 2020, Astronomy & Astrophysics, in press
http://arxiv.org/abs/2002.08690

Media Contact

Dr. Janine Fohlmeister idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.aip.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close