Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen

Elektronen verlassen den Supraleiter nur als Paare mit jeweils entgegengesetztem Spin. Werden beide Wege der Elektronen für eine Spinart durch parallele Spinfilter blockiert, sind gepaarte Elektronen aus dem Supraleiter blockiert, der Stromfluss nimmt ab.
(c) Scixel / Universität Basel, Departement Physik

Physiker der Universität Basel haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter. Für ihre Untersuchung verwendeten sie Spinfilter aus Nanomagneten und Quantenpunkten, wie sie im Wissenschaftsjournal «Nature» berichten.

Die Verschränkung zweier Teilchen ist eines derjenigen Phänomene in der Quantenphysik, die sich kaum mit der alltäglichen Erfahrung vereinbaren lässt. Bei Verschränkung, die Albert Einstein als «spukhafte Fernwirkung» beschrieben hat, sind bestimmte Eigenschaften zweier Teilchen eng miteinander verbunden, selbst wenn sie weit voneinander entfernt sind. Die Erforschung der Verschränkung bei Lichtteilchen wurde mit dem diesjährigen Nobelpreis für Physik ausgezeichnet.

Auch zwei Elektronen können miteinander verschränkt sein – zum Beispiel über ihren Spin. So formieren sich in einem Supraleiter je zwei Elektronen zu sogenannten Cooper-Paaren, in denen die einzelnen Spins verschränkt sind und die für die verlustfreie Stromleitung sorgen.

Forschende am Swiss Nanoscience Institute und am Departement Physik der Universität Basel sind seit einigen Jahren in der Lage, Elektronenpaare aus einem Supraleiter herauszuholen und die beiden Elektronen räumlich zu trennen. Dies gelingt mittels zweier Quantenpunkte – parallel geschaltete nanoelektronische Strukturen, die jeweils nur für einzelne Elektronen durchlässig sind.

Entgegengesetzte Elektronenspins aus Cooper-Paaren

Jetzt hat das Team von Prof. Dr. Christian Schönenberger und Dr. Andreas Baumgartner in Zusammenarbeit mit Forschenden um Prof. Dr. Lucia Sorba vom Istituto Nanoscienze-CNR und von der Scuola Normale Superiore in Pisa erstmals experimentell belegt, was theoretisch schon lange erwartet wurde: Elektronen aus einem Supraleiter treten immer paarweise und mit entgegengesetzten Spins auf.

Im Gegensatz zu parallelen Spinfiltern ist es bei antiparallelen Spinfiltern für Elektronenpaare erlaubt, aus dem Supraleiter auszutreten, was sich als deutlich höheren Strom in beiden Wegen messen lässt.
Im Gegensatz zu parallelen Spinfiltern ist es bei antiparallelen Spinfiltern für Elektronenpaare erlaubt, aus dem Supraleiter auszutreten, was sich als deutlich höheren Strom in beiden Wegen messen lässt. (c) Scixel / Universität Basel, Departement Physik

Die Physiker konnten mit einem innovativen Versuchsaufbau messen, dass der Spin des einen Elektrons nach oben zeigt, wenn der andere nach unten gerichtet ist, und umgekehrt. «Wir haben damit die negative Korrelation zwischen den Spins von gepaarten Elektronen experimentell bewiesen», erklärt Andreas Baumgartner, der das Projekt geleitet hat.

Den Forschenden gelang dies, indem sie einen selbst entwickelten Spinfilter eingesetzt haben. Dazu erzeugten sie in jedem der beiden Quantenpunkte, welche die Elektronen des Cooper-Paares trennen, mithilfe von winzigen Magneten individuell einstellbare Magnetfelder. Da der Spin auch das magnetische Moment eines Elektrons bestimmt, wird nur jeweils eine bestimmte Spin-Sorte durchgelassen.

«Wir können beide Quantenpunkte so einstellen, dass vor allem Elektronen mit einem bestimmten Spin durchgelassen werden», beschreibt Erstautor Dr. Arunav Bordoloi den experimentellen Aufbau. «Durch den einen Quantenpunkt gelangt zum Beispiel ein Elektron mit Spin nach oben und durch den anderen Quantenpunkt ein Elektron mit dem Spin nach unten, oder umgekehrt. Wenn beide Quantenpunkte so eingestellt sind, dass sie nur dieselben Spins durchlassen, werden die elektrischen Ströme in beiden Quantenpunkten reduziert, obwohl ein einzelnes Elektron durchaus einen einzelnen Quantenpunkt passieren dürfte.»

«Mit dieser Methode konnten wir zum ersten Mal solche negativen Korrelationen zwischen Elektronenspins aus einem Supraleiter nachweisen», fasst Andreas Baumgartner zusammen. «Unsere Experimente sind der erste Schritt, aber noch kein vollständiger Nachweis für Verschränkung der Elektronenspins, da wir die Spinfilter nicht beliebig einstellen können – aber daran arbeiten wir noch.»

Die Arbeit, die in «Nature» publiziert wurde, gilt als wichtiger Schritt zur weiteren experimentellen Untersuchung quantenmechanischer Phänomene, wie zum Beispiel der Verschränkung von Teilchen in Festkörpern, die auch ein zentraler Bestandteil für das Funktionieren von Quantencomputern ist.

Wissenschaftliche Ansprechpartner:

Dr. Andreas Baumgartner, Universität Basel, Swiss Nanoscience Institute und Departement Physik, Tel. +41 61 207 39 06, E-Mail: andreas.baumgartner@unibas.ch

Originalpublikation:

Arunav Bordoloi, Valentina Zannier, Lucia Sorba, Christian Schönenberger, Andreas Baumgartner
Spin Cross-Correlation Experiments in an Electron Entangler
Nature (2022), doi: 10.1038/s41586-022-05436-z
https://doi.org/s41586-022-05436-z

http://www.unibas.ch

Media Contact

Reto Caluori Kommunikation
Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer