Siliziumchip mit integriertem Laser: Licht aus dem Nanodraht

Nanodrähte aus Gallium-Arsenid auf einer Silizium-Oberfläche Thomas Stettner/Philipp Zimmermann / TUM

Immer kleiner, immer schneller, immer billiger – seit Beginn des Computerzeitalters verdoppelt sich die Leistung von Prozessoren durchschnittlich alle 18 Monate. Schon vor 50 Jahren prognostizierte Intel-Mitbegründer Gordon E. Moore diese Zunahme der Rechnerleistung. Und das „Mooresche Gesetz“ scheint immer noch zu gelten.

Doch jetzt stößt die Miniaturisierung der Elektronik an physikalische Grenzen. „Schon heute sind Transistoren nur noch einige Nanometer groß. Reduziert man die Abmessungen noch weiter, steigen die Kosten massiv,“ sagt Professor Jonathan Finley, Leiter des Walter-Schottky-Instituts der TUM. „Eine Steigerung der Leistung ist nur realisierbar, wenn man Elektronen durch Photonen, also Lichtteilchen, ersetzt.“

Photonik – der Königsweg zur Miniaturisierung

Die Datenübertragung und -verarbeitung mit Licht hat das Potenzial, die bisherigen Grenzen der Elektronik zu überschreiten. Tatsächlich gibt es bereits erste Photonik-Chips aus Silizium. Die Lichtquellen für die Informationsübertragung müssen jedoch durch komplizierte und aufwändige Fertigungsschritte mit dem Silizium verbunden werden. Weltweit suchen Forscher daher nach alternativen Methoden.

Der Durchbruch ist jetzt Forschern an der TU München gelungen: Dr. Gregor Koblmüller vom Lehrstuhl für Halbleiter Quanten-Nanosysteme hat zusammen mit Jonathan Finley ein Verfahren entwickelt, Nanodrahtlaser direkt auf Silizium-Chips abzuscheiden. Die Technologie wurde bereits zum Patent angemeldet.

Die Verbindung eines III-V Halbleiters mit Silizium erforderte einiges an Tüftelarbeit: „Die beiden Materialien haben unterschiedliche Gitterabstände und unterschiedliche thermische Ausdehnungskoeffizienten. Das führt zu Spannungen “, erläutert Koblmüller. „Dampft man zum Beispiel Galliumarsenid flächig auf Silizium auf, treten Defekte auf“.

Dem TUM-Team gelang es, dieses Problem zu umgehen: Die Nanodrähte stehen aufrecht auf dem Silizium, die Grundfläche beträgt dadurch nur noch einige Quadratnanometer. Defekte können die Wissenschaftler so weitestgehend vermeiden.

Atom für Atom zum Nanodraht

Doch wie wird ein Nanodraht zum Laser? Um kohärentes Licht zu erzeugen, müssen die Photonen am oberen und unteren Ende des Drahts reflektiert werden, wodurch sich der Lichtpuls verstärkt, bis er die gewünschte Leistung erreicht hat.

Um diese Bedingungen zu erfüllen, mussten die Forscher tief in die physikalische Trickkiste greifen: „Die Grenze zwischen Galliumarsenid und Silizium reflektiert nicht genügend Licht. Wir haben daher einen Extra-Spiegel eingebaut – eine 200 Nanometer dünne Siliziumoxid-Schicht, die auf das Silizium aufgedampft wird“, erklärt Benedikt Mayer, Doktorand im Team von Koblmüller und Finley. „In die Spiegelschicht lassen sich dann feine Löcher ätzen, und in denen kann man mittels Epitaxie Atom für Atom, Schicht für Schicht Halbleiter-Nanodrähte züchten.“

Erst wenn die Drähte über die Spiegelfläche herausragen, dürfen sie in die Breite wachsen – solange bis der Halbleiter dick genug ist, damit Photonen in ihm hin und her flitzen und die Aussendung weiter Lichtteilchen anregen können. „Dieser Prozess ist sehr elegant, weil wir die Nanodraht-Laser so direkt auf die Wellenleiter im Silizium Chip positionieren können“, so Koblmüller.

Grundlagenforschung auf dem Weg in die Anwendung

Derzeit produzieren die neuen Galliumarsenid Nanodraht-Laser infrarotes Licht mit einer fest vorgegebenen Wellenlänge und unter gepulster Anregung. „In Zukunft wollen wir die Emissionswellenlänge sowie weitere Laserparameter gezielt verändern, um die Lichtausbreitung unter kontinuierlicher Anregung im Silizium-Chip und die Temperaturstabilität noch besser steuern zu können“, ergänzt Finley.

Erste Erfolge hat das Team soeben veröffentlicht. Und das nächste Ziel steht bereits fest: „Wir wollen eine Schnittstelle zum Strom zu schaffen, damit wir die Nanodrähte elektrisch betreiben können und keine externen Laser mehr benötigen“, erläutert Koblmüller.

„Die Arbeiten sind eine wichtige Voraussetzung für die Entwicklung hochleistungsfähiger optische Komponenten für zukünftige Computer“, resümiert Finley. „Wir konnten zeigen, dass eine Fertigung von Siliziumchips mit integrierten Nanodraht-Lasern möglich ist.“

Die Forschung wurde gefördert mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) durch das TUM Institute for Advanced Study, den Excellenzcluster Nanosystems Initiative Munich (NIM) und die International Graduate School of Science and Engineering (IGSSE) der TUM sowie von IBM über ein Internationales Doktoranden-Programm.

Publikationen:

Monolithically Integrated High-beta Nanowire Lasers on Silicon
B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkötter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmüller, und J. J. Finley
Nano Letters, 2016, 16 (1), pp 152-156 – DOI: 10.1021/acs.nanolett.5b03404
Link: http://pubs.acs.org/doi/full/10.1021/acs.nanolett.5b03404

Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial Gain control
T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley
Applied Physics Letters, 108, 011108 (2016) – DOI: 10.1063/1.4939549
Link: http://dx.doi.org/10.1063/1.4939549

Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires
B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, Abstreiter, G. Koblmüller, and J. J. Finley;
Applied Physics Letters 108, Vol. 8, Veröffentlichung 22. Feb. 2016.

Bildmaterial:

https://mediatum.ub.tum.de/?id=1293224

Kontakt:

Prof. Dr. Jonathan J. Finley
Technische Universität München
Walter Schottky Institut
Am Coulombwall 4, 85748 Garching, Germany
Tel.: +49 89 289 11481 – E-Mail: jonathan.finley@wsi.tum.de

http://www.wsi.tum.de/ Website des Walter Schottky Instituts der TU München
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32934/ Presseinformation auf der TUM-Homepage

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer