Seltenes Bild eines Super-Jupiters wirft neues Licht auf Planetenentstehung

Falschfarbenes Nahinfrarotbild (3,8 Mikrometer Wellenlänge) des κ And (»Kappa Andromedae«)-Systems, aufgenommen mit dem Subaru-Teleskop auf Hawaii im Juli 2012. Der Großteil des Lichts des Muttersterns, auf den das Bild zentriert ist, wurde durch Bildverarbeitung herausgefiltert. Die Flecken rund um die Scheibe sind Resteffekte des herausgerechneten Sternenlichts. Der Super-Jupiter κ And b ist oben links deutlich zu sehen. Im Bild entspricht sein Abstand vom Mutterstern dem 1,8fachen des Abstands des Neptuns von der Sonne.<br><br>Bild: NAOJ / Subaru / J. Carson (College of Charleston) / T. Currie (University Toronto)<br>

Der Gasriese hat etwa das 13fache der Masse des Planeten Jupiter, sein Mutterstern das 2,5-fache der Sonnenmasse. Alles deutet darauf hin, dass der Planet ähnlich entstanden ist wie normale Planeten mit geringerer Masse: in einer »protoplanetaren Scheibe« aus Gas und Staub, die den neugeborenen Stern umgab. Das macht die Entdeckung zu einem wichtigen Testfall für aktuelle Modelle der Planetenentstehung und ihre Vorhersagen zu Planeten um massereiche Sterne.

Von den bislang bekannten knapp 850 Exoplaneten – Planeten, die andere Sterne umkreisen als die Sonne – existieren nur von einem kleinen Teil astronomische Aufnahmen. Die allermeisten Nachweise gelangen nur indirekt. Grund dafür ist, dass Sterne ungleich heller sind als ihre Planeten (typische Faktoren: eine Milliarde oder mehr) und ihre Planeten schlicht überstrahlen.

Jetzt ist einem Team von Astronomen, das von Joseph Carson geleitet wird (College of Charleston und Max-Planck-Institut für Astronomie) eine Aufnahme eines großen »Super-Jupiter« gelungen, der den massereichen Stern κ And (»Kappa Andromedae«) umkreist. Die Entdeckung nutzt das Subaru-Teleskop, ein 8 Meter-Spiegelteleskop auf dem Gipfel des Mauna Kea auf Hawaii, das vom japanischen Nationalobservatorium betrieben wird.

κ And ist ein sehr junger Stern, nur geschätzte 30 Millionen Jahre alt (Alter unserer Sonne: 5 Milliarden Jahre). Um die Aufnahme seines Begleiters κ And b („Kappa Andromedae b“) überhaupt gewinnen zu können, mussten die Astronomen sowohl bei der Beobachtung als auch bei der Auswertung ausgefeilte Instrumente und Methoden anwenden.

Als besondere Herausforderung kam hinzu, dass das neuentdeckte Objekt von seinem Mutterstern weniger als doppelt soweit entfernt ist wie Neptun von der Sonne – die meisten bisherigen Aufnahmen gelangen bei Exoplaneten, die noch deutlich weiter von ihrem Mutterstern entfernt sind.

Mit einer Masse von rund 13 Jupitermassen könnte das Objekt κ And b entweder ein Planet oder ein sehr leichter »Brauner Zwerg« sein, also eine Zwischenstufe zwischen Planeten und echten Sternen. Die verfügbaren Daten sprechen dafür, dass es sich um einen Planeten handelt.

Interessant ist an der Entdeckung vor allem, dass sich das Objekt um einen jungen, massereichen Stern bewegt. Zusammen mit der Information über den Abstand des Planeten von seinem Stern bedeutet das, dass sich das Objekt sehr wahrscheinlich so gebildet hat wie normale Planeten niedrigerer Masse: in einer protoplanetaren Scheibe aus Gas und Staub, die den jungen Stern während seiner frühesten Entwicklungsphasen umgeben hat.

In den vergangenen Jahren haben Beobachter und Theoretiker argumentiert, dass massereiche Sterne wie dieser auch mit größerer Wahrscheinlichkeit massereiche Planeten haben sollten, als es z.B. bei unserer Sonne der Fall ist. Andererseits gab es Bedenken, dass bei besonders massereichen Sterne gar nicht die richtigen Voraussetzungen für herkömmliche Planetenentstehung vorliegen könnten: Solche Sterne senden enorme Mengen an hochenergetischer Strahlung aus, die große Teile einer in Entstehung befindlichen protoplanetaren Scheibe schlicht zersetzen und zerstreuen könnte. Damit würden die üblichen Prozesse der Planetenentstehung stark behindert, vielleicht sogar unmöglich gemacht.

Die Entdeckung des Super-Jupiters κ And b legt jetzt nahe, dass zumindest Sterne bis zum zweieinhalbfachen der Sonnenmasse in protoplanetaren Scheiben große Planeten produzieren können – eine Schlüsselinformation für Forscher, die an Modellen der Planetenentstehung arbeiten.

Ein entscheidender Vorteil des direkten Nachweises ist, dass der Exoplanet unmittelbar weiteren astronomischen Beobachtungstechniken zugänglich ist, etwa der genauen Analyse seines Lichts mit Hilfe der Spektroskopie. Entsprechende weitere Untersuchungen des von κ And b über einen breiten Wellenlängenbereich hinweg ausgesandten Lichts sollen jetzt Daten zur chemischen Zusammensetzung der Atmosphäre des Gasriesen liefern sowie helfen, seine Bahndaten genauer zu bestimmen und mögliche weitere Planeten nachzuweisen. Mit diesen zusätzlichen Informationen sollten sich sowohl die Einzelheiten der Entstehung des Jupiters nachvollziehen als auch allgemeinere Aussagen über die Planetenentstehung bei massereichen Sternen ableiten lassen.

Kontakt

Markus Feldt (co-author)
Max-Planck-Institut für Astronomie
Heidelberg
Tel.: (+49|0) 6221 – 528 262
E-Mail: feldt@mpia.de

Thomas Henning (Koautor und SEEDS Co-PI)
Max-Planck-Institut für Astronomie
Heidelberg
Tel.: (+49|0) 6221 – 528 200
E-Mail: henning@mpia.de

Markus Pössel (Public relations)
Max-Planck-Institut für Astronomie
Heidelberg
Tel.: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de

Ansprechpartner für Medien

Dr. Markus Pössel Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Älteste Karbonate im Sonnensystem

Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde. Ein 2019 in Norddeutschland niedergegangener Meteorit enthält Karbonate, die zu den ältesten im Sonnensystem überhaupt zählen und zugleich einen Nachweis der…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen