Schlüsseleigenschaft von Signalen im Gehirn entdeckt

Priv.-Doz. Dr. Aleksandar Matković forscht gemeinsam mit dem Deutschen Zentrum für Neurodegenerative Erkrankungen in Berlin an den Schlüsseleigenschaften von Signalen im Gehirn.
Foto: FWF/Sabine Hoffmann

Wissenschaftler aus Leoben und Berlin konnten Erkenntnisse darüber gewinnen, wie Signale zwischen den Neuronen im Gehirn ausgetauscht werden. Dieses neue Verständnis kann unter anderem zur Entwicklung spezieller Medikamente in Zusammenhang mit der Alzheimer-Krankheit führen.

Einem Forschungsteam um den Leobener Physiker Priv.-Doz. Dr. Aleksandar Matković und dem Neurowissenschaftler Dr. Dragomir Milovanović vom Deutschen Zentrum für Neurodegenerative Erkrankungen in Berlin ist es erstmals gelungen, eine Schlüsseleigenschaft zur Steuerung der neuronalen Kommunikation direkt zu beobachten. Das Ergebnis wurde jetzt in der renommierten interdisziplinären Fachzeitschrift „Nano Letters“ veröffentlicht und vom Verlag als Cover der Zeitschrift ausgewählt.

Graphen trifft auf Flüssigkeitströpfchen

Die Kommunikation im Gehirn hängt entscheidend von der Ausschüttung von Botenmolekülen beim Eintreffen eines elektrischen Signals ab. Diese Botenmoleküle sind in kleine Säckchen verpackt, die synaptische Vesikel genannt werden. Hunderte von synaptischen Vesikeln sammeln sich an den Kontaktstellen zwischen den Neuronen an.

Es konnte gezeigt werden, dass diese Vesikeln dynamische flüssigkeitsähnliche Komponenten an der Synapse bilden, was durch einige der am häufigsten vorkommenden neuronalen Proteine, die Synapsine, vermittelt wird. Aleksandar Matković von der Montanuniversität Leoben und Dragomir Milovanović entdeckten nun, dass diese flüssigen Tröpfchen in der Lage sind, ein elektrisches Potenzial an ihrer Schnittstelle zu beherbergen. In ihrer Forschungsarbeit haben die Wissenschaftler Sensoren auf Graphenbasis verwendet, um die Ansammlung elektrischer Ladung zu demonstrieren.

Diese Erkenntnisse bringen ein neues Verständnis dafür, wie die Signale zwischen den Neuronen ausgetauscht werden. Einerseits kann das Verständnis der Eigenschaften dieser elektrischen Doppelschicht zur Entwicklung spezieller Medikamente führen, insbesondere im Zusammenhang mit der Alzheimer-Krankheit.

Andererseits könnte das erreichte Zusammenspiel zwischen Nanoelektronik und synaptischen Proteinen zur Entwicklung einer Verbindung zwischen der Elektronik und unserem neuronalen System führen, was eine Revolution in der Entwicklung der Kybernetik darstellen würde.

Wissenschaftliche Ansprechpartner:

Priv.-Doz. Dr. Aleksandar Matković
Lehrstuhl für Physik
E-Mail: aleksandar.matkovic@unileoben.ac.at
Tel.: 03842 402 4664

Originalpublikation:

https://pubs.acs.org/doi/10.1021/acs.nanolett.3c02915

Weitere Informationen:

https://www.unileoben.ac.at/matkovics-lab/research/publications

Media Contact

Mag. Christine Adacker Öffentlichkeitsarbeit
Montanuniversität Leoben

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer