Rennstrecke für schnelle Elektronen in Halbleiterstrukturen

Um die elektrischen Einheiten, wie Spannung, Widerstand und Stromstärke, mit höchster Präzision zu „machen“, werden heutzutage Quanteneffekte in speziellen Nano-Schaltungen eingesetzt.

Ein wichtiges Ausgangsmaterial dafür sind extrem reine Halbleiterschichten, in denen sich sehr mobile Elektronen nahezu unbehindert bewegen können ohne mit Fremdatomen zusammenzustoßen. Um für zukünftige Entwicklungen im Bereich der elektrischen Quantenmetrologie gerüstet zu sein, hat die PTB eine neue Molekularstrahlepitaxie-Anlage in Betrieb genommen, die für die Herstellung von Halbleiterschichten optimiert ist, die noch reiner sind als die bisherigen.

Schon in den ersten Testschichten wurden extrem schnelle Elektronen beobachtet, mit einer Beweglichkeit, die mehr als fünfmal so hoch ist wie bisher. Die PTB baut damit ihre führende Stellung in der elektrischen Quantenmetrologie mit Halbleiterstrukturen aus.

Halbleiter sind der Rohstoff für Computer und Unterhaltungselektronik und finden sich heutzutage in jedem Haushalt. In der elektrischen Quantenmetrologie werden Halbleiterbauelemente in zwei Gebieten eingesetzt. Zum einen werden mit Hilfe des Quanten-Hall-Effekts elektrische Widerstandswerte reproduziert, die um weniger als ein Milliardstel schwanken. Zum anderen kann man gerade aus hochbeweglichen Elektronenschichten sog. Einzelelektronenpumpen herstellen, in denen – getaktet durch eine Wechselspannung – ein Elektron nach dem anderen in kontrollierter Weise durch die Schaltung transportiert wird.

Einzelelektronenpumpen sind zur Zeit ein Top-Thema der metrologischen Forschung, da mit ihnen die elektrische Stromstärke als Produkt von Frequenz und Elementarladung definiert werden soll. Eine solche Definition würde die Einheit der Stromstärke, das Ampere, an eine räumlich und zeitlich unveränderliche Fundamentalkonstante der Physik, nämlich die Elementarladung, binden.

Für beide Anwendungen werden Schichtstrukturen aus den Halbleitern GaAs und AlGaAs eingesetzt. In diesen Kristallstrukturen bildet sich an der Grenzfläche zwischen den beiden Materialien eine nur wenige Nanometer dicke Elektronenschicht aus. Sie wird als zweidimensionales Elektronengas bezeichnet, weil die Elektronen sich nur in dieser Ebene bewegen können.

Eine wichtige Kenngröße zweidimensionaler Elektronengase ist die Beweglichkeit der Elektronen, die beschreibt auf welche Geschwindigkeit sich die Elektronen durch eine elektrische Spannung beschleunigen lassen. Je seltener die Elektronen durch die „Kollision“ mit Fremdatomen gebremst werden, desto höher ist ihre Beweglichkeit. Die Elektronenbeweglichkeit ist daher ein direktes Maß für die Reinheit der Halbleiterschichten.

Zur Herstellung reiner Halbleiter wird die Methode der Molekularstrahl-Epitaxie verwendet. In einer Ultrahochvakuumkammer, in der der Hintergrunddruck bis zu 15 Größenordnungen geringer ist als der Luftdruck, werden die Ausgangsmaterialien für die Halbleiterherstellung, z.B. Gallium und Arsen verdampft. Auf einem Substrat wächst dann der gewünschte GaAs-Kristall auf. Die Dicke der Schicht kann durch Regelung des Galliumflusses auf eine Atomlage genau kontrolliert werden, was notwendig ist, um die benötigten Nanometer-Schichtstrukturen herzustellen.

Die Reinheit der Halbleiterstrukturen wird durch die Güte des Ultrahochvakuums der Molekularstrahlepitaxie-Anlage bestimmt. Die an der PTB neu in Betrieb genommene Anlage verfügt über ein extrem leistungsstarkes Pumpsystem zur Erzeugung niedrigster Drücke. Weiterhin sorgt ein ausgeklügeltes Kühlsystem dafür, dass Verunreinigungen und Fremdatome ausfrieren und somit nicht in den Halbleiter eingebaut werden.

Das Ergebnis dieses Aufwands sind zweidimensionale Elektronengase mit Elektronenbeweglichkeiten von bis zu 7,5 Millionen cm2/Vs bei tiefen Temperaturen, was eine Verbesserung um den Faktor 5 gegenüber Proben aus der Standardanlage darstellt. Die neuen Strukturen bieten den Elektronen gewissermaßen eine Formel-I-Rennstrecke, auf der sie höchste Geschwindigkeiten erreichen können.

Mit Hilfe der neuen technologischen Möglichkeiten will die PTB die Entwicklung von Halbleiter-Einzelelektronenpumpen vorantreiben. Weitere Arbeiten werden sich auf den sog. gebrochenzahligen Quanten-Hall-Effekt konzentrieren, um die Universalität des Quanten-Hall-Effekts zu testen, der die Grundlage der elektrischen Widerstandmetrologie darstellt.

Ansprechpartner in der PTB:
Klaus Pierz, Fachbereich 2.5 Halbleiterphysik und Magnetismus. Tel. (0531) 592- 2412, E-mail: Klaus.Pierz@ptb.de
Die Forschungsnachricht auf den Internetseiten der PTB-Abteilung
http://www.ptb.de/de/org/2/aktuell/2008/abteilung2_0805.htm
Weitere aktuelle PTB-Nachrichten
o Wirtschaft und Wägetechnik (21. Aug.)
o Geschwindigkeitsrekord für Magnetspeicher (18. Aug.)
o Neue Technologien für Speicher- und Logikchips (13. Aug.)
o Abschirmung für ehrgeiziges Neutronenexperiment (24. Juli)
o Vertrauenswürdige Stromzähler (16. Juli)

Media Contact

Imke Frischmuth idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Junger Gasriesenexoplanet gibt Astronomen Rätsel auf

Wissenschaftler finden den bisher jüngsten Super-Jupiter, für den sie sowohl Masse als auch Größe messen konnten. Eine Forschergruppe um Olga Zakhozhay vom MPIA hat einen Riesenplaneten um den sonnenähnlichen Stern…

Im dynamischen Netz der Sonnenkorona

In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes. Mit Hilfe von Messdaten der amerikanischen Wettersatelliten GOES…

Metall dringt tiefer in Auenböden ein als Plastik

Kunststoffe und Metalle verteilen sich unterschiedlich in den Böden von Flussauen: Während Plastikpartikel sich in den obersten Bodenschichten konzentrieren, finden sich Metalle bis in eine Tiefe von zwei Metern. Das…

Partner & Förderer