Randeffekte in Quantensystem simuliert

Der Innsbrucker Theoretiker Marcello Dalmonte Uni Innsbruck

Die Physik von Festkörpern gibt auch heute noch viele Rätsel auf. Neue Möglichkeiten ergeben sich durch Fortschritte in der experimentellen Quantenphysik.

Insbesondere haben sich ultrakalte Atome, die in optischen Gittern gefangen und sehr gut kontrolliert werden können, als ideales Werkzeug für die Untersuchung von physikalischen Phänomenen in Festkörpern erwiesen.

Eines dieser Phänomene wird im Zusammenhang mit dem Quanten-Hall-Effekt beobachtet: Werden bestimmte Materialen einem starken Magnetfeld ausgesetzt, können Elektronen an den Rändern keine ungestörten Kreisbahnen durchlaufen, stoßen an den Rand und werden dort reflektiert. Dadurch beschreiben sie „hüpfende Umlaufbahnen“.

Als makroskopische Konsequenz sind an den Rändern von Platten dieser Materialien sogenannte „chirale Ströme“ zu beobachten, die an den gegenüberliegenden Rändern in gegenläufige Richtungen fließen.

„Man kann sich das wie einen Fluss vorstellen, in dem die Fische am einen Ufer nach rechts und am anderen Ufer nach links schwimmen“, beschreibt der Theoretiker Marcello Dalmonte aus der Arbeitsgruppe von Peter Zoller am Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften und am Institut für Theoretische Physik der Universität Innsbruck das Phänomen.

Forscher lassen Atome hüpfen

Das Team um Peter Zoller hatte bereits vor zehn Jahren einen Vorschlag gemacht, wie chirale Ströme mit neutralen Atomen simuliert werden können. Diese Idee haben nun Physiker am European Laboratory for Nonlinear Spectroscopy (LENS) in Florenz gemeinsam mit den Innsbrucker Theoretikern aufgegriffen und umgesetzt.

Die Wissenschaftler fangen dazu im Labor ein stark abgekühltes Gas aus Ytterbium-Atomen in einem aus Laserstrahlen gebildeten, optischen Gitter. Weil sich die Struktur von Platten im Experiment nur sehr schwer nachbilden lässt, haben die Physiker zu einem weiteren Trick gegriffen, den Forscher am Institute of Photonic Sciences in Barcelona entwickelt haben: Sie nutzen für ihre Messungen jeweils eindimensionale Ketten von Atomen und bilden die zweite Dimension synthetisch nach. Dazu verwenden sie zwei oder drei interne Zustände, in die die Atome mit Hilfe von Lasern versetzt werden.

„Theoretisch gesprochen ist diese Springen in andere interne Zustände genau das Gleiche wie das geometrische Springen der Elektronen in den Randzonen eines Festkörpers“, erklärt Marcello Dalmonte. Gemeinsam mit Marie Rider und Peter Zoller hat er theoretische Vorarbeiten für das Experiment geleistet und wichtige Hinweise gegeben, wie das Phänomen messtechnisch erfasst werden kann.

Die nun in der Fachzeitschrift Science veröffentlichten Messergebnisse zeigen, dass sich die Teilchen auf einer Ebene mehrheitlich nach rechts und auf einer anderen Ebene mehrheitlich nach links bewegen. „Dieses Verhalten ist sehr ähnlich den aus der Festkörperphysik bekannten chiralen Strömen“, sagt Dalmonte.

Mit der Simulation dieser exotischen Effekte eröffnen die Forscher die Möglichkeit zur Untersuchung neuer physikalischer Phänomene. So werden im Zusammenhang mit dem Quanten-Hall-Effekt zum Beispiel Anyonen intensiv erforscht. Diese exotischen Quasiteilchen werden auch als Grundlage für topologische Quantencomputer gehandelt.

Unterstützt wurden die Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF, dem europäischen Wissenschaftsrat ERC und der Europäischen Union.

Publikation: Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, L. Fallani. Science, 25. September 2015 (doi: 10.1126/science.aaa8736)

Kontakt:
Marcello Dalmonte
Institut für Theoretische Physik
Universität Innsbruck und
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507 4792
E-Mail: marcello.dalmonte@uibk.ac.at

Christian Flatz
Public Relations
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

http://www.uibk.ac.at/th-physik/qo/ – Arbeitsgruppe Quantenoptik
http://www.uibk.ac.at/th-physik/ – Institut für Theoretische Physik, Universität Innsbruck
http://iqoqi.at/ – Institut für Quantenoptik und Quanteninformation, ÖAW
http://www.lens.unifi.it/ – European Laboratory for Nonlinear Spectroscopy (LENS)

Media Contact

Dr. Christian Flatz Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit dem Klimawandel Schritt halten?

GEOMAR-Studie zeigt Anpassungsfähigkeit von Ruderfußkrebsen, solange nicht zu viele Stressfaktoren gleichzeitig auftreten. Die für die Nahrungsnetze der Ozeane wichtigen Copepoden können sich genetisch an wärmere und saurere Meere anpassen. Dies…

Arktisches Meereis weiter auf dem Rückzug

Der heiße Sommer 2022 auf der Nordhalbkugel wirkt sich zwar nur moderat auf die Meereisbedeckung aus, der Negativtrend setzt sich aber weiter fort. Am 16. September erreichte das Meereis in…

Mehrjährige Blühstreifen in Kombination mit Hecken

… unterstützen Wildbienen in Agrarlandschaften am besten. Blühzeitpunkte von Blühstreifen und Hecken ergänzen sich gegenseitig und fördern Bienendiversität. Vivien von Königslöw: „Ergebnisse legen nahe, bevorzugt mehrjährige Blühstreifen statt einjährige Blühstreifen…

Partner & Förderer