Quanteninformationsverarbeitung: Physik – Gemeinsam stärker in der Quantenwelt

Wie die Welt und das Universum im Großen funktionieren, wird durch die Gesetze der klassischen Physik beschrieben. Dabei sind der Zustand eines Systems und damit dessen Zukunft eindeutig durch die Orte und Geschwindigkeiten der einzelnen Teilchen bestimmt.

Auf mikroskopischer Ebene, wo sich die Dynamik auf sehr kleinen Energieskalen abspielt – etwa wenn man Atome oder die Elektronen in einem Festkörper betrachtet – öffnen sich neue Dimensionen: Hier kommen die Gesetze der Quantenphysik zum Tragen. Das bedeutet, dass sich verschiedene klassische Zustände überlagern und Ort und Geschwindigkeit eines Teilchens nur mit Hilfe von Wahrscheinlichkeiten beschrieben werden können.

„Damit steht dem System eine viel größere Menge von möglichen Zuständen zur Verfügung. Es ist wesentlich komplexer und schwieriger zu beschreiben, bietet aber auch mehr Möglichkeiten für technische Anwendungen“, sagt der LMU-Physiker Dr. Thomas Barthel. Eine mögliche Anwendung, in die viele Hoffnungen gesetzt werden, sind etwa Quantencomputer: Die Miniaturisierung unserer normalen Computer stößt an ihre Grenzen, weil die Leiterbahnen so eng und klein werden, dass Quanteneffekte relevant werden. Mit Quantencomputern versucht man einen Paradigmenwechsel einzuleiten, bei dem Quanteneffekte nicht mehr limitierende Störungen darstellen, sondern gezielt ausgenutzt werden, um bisher unerreichte Rechnerleistungen zu erzielen.

Allerdings gibt es bei der Nutzung von Quanteneffekten eine Schwierigkeit: Wenn ein quantenmechanisches System nicht komplett abgeschirmt ist, sondern in Wechselwirkung mit seiner Umwelt tritt, werden seine quantenmechanischen Eigenschaften zerstört. In dem Moment, in dem im Labor ein Quantensystem – etwa ein Atom – gemessen wird, entscheidet sich das System für einen Zustand, sodass die Überlagerung irreversibel verschwindet. Bei einer Kopplung des Quantensystems an seine Umgebung passiert dies ganz ähnlich. Die Umwelt macht eine Art Messung und lässt die Quanteninformation zerfallen. „Dann folgt unser System den Gesetzen der normalen – langweiligen – klassischen Mechanik“, sagt Barthel.

Vielfalt verschwindet in Vielteilchensystemen langsamer

Dieses Phänomen wird Dekohärenz genannt und ist der Feind jedes Experimentators, der die quantenmechanischen Eigenschaften eines Systems untersuchen oder für technische Zwecke ausnutzen möchte. Typischerweise erfolgt der Zerfall der quantenmechanischen Eigenschaften exponentiell mit der Zeit. In ihrer neuen Studie haben Barthel und sein Kollege Dr. Zi Cai nun untersucht, was passiert, wenn nicht die typischen einfachen Quantensysteme (z.B. ein einzelnes Elektron oder Ion) untersucht werden, sondern sogenannte Vielteilchensysteme mit sehr großer Teilchenzahl. Dazu gehören etwa Elektronen in einem Festkörper. „Dabei haben wir entdeckt, dass sich das Zerfallsgesetz der Quanteninformation qualitativ ändern kann“, erklärt Barthel: Besteht das Quantensystem aus sehr vielen Teilchen, die untereinander wechselwirken, kann die Zerfallszeit gegen unendlich gehen. In diesem Fall folgt der Zerfall einem Potenzgesetz – und ist damit sehr viel langsamer als in einfachen Systemen. Indem die Teilchen zusammenarbeiten, können sie also den zerstörerischen Einfluss der Umwelt minimieren.

Damit haben die Wissenschaftler einen bisher unbekannten fundamentalen Effekt entdeckt, der für zukünftige Experimente und technische Anwendungen von großer Bedeutung ist. „Mit unserer Studie liefern wir allgemein das Handwerkszeug, um die Dekohärenz in Quantenvielteilchensystemen tunen zu können – dies ist insbesondere für das Feld der Quanteninformationsverarbeitung ein wichtiger Fortschritt“, betont Barthel. Unter anderem könnte man den neu entdeckten Effekt bei der Realisierung von Quantencomputern und bei der Simulation von Quantensystemen mithilfe anderer gut kontrollierbarer Quantensysteme
ausnutzen.
(Physical Review Letters 2013) göd
Publikation:
Algebraic versus exponential decoherence in dissipative many-particle systems
Zi Cai and Thomas Barthel
Phys. Rev. Lett. 111, 150403 (2013).
Doi: 10.1103/PhysRevLett.111.150403
Kontakt:
Dr. Thomas Barthel
Fakultät für Physik
Phone: +49 (0)89 2180-6417
E-Mail: t.barthel@physik.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Trends in Photonik und Quantentechnologien

FBH auf den Photonics Days 2024. Am 9. und 10. Oktober 2024 beteiligt sich das Ferdinand-Braun-Institut an den Photonics Days Berlin Brandenburg mit Vorträgen und der begleitenden Ausstellung. Zwei Tage…

Europas biologischer Vielfalt auf der Spur

Forschende aus 33 Ländern erstellen Referenzgenome von 98 Arten. Wissenschaftler:innen aus ganz Europa ist es im Rahmen des Pilotprojekts des European Reference Genome Atlas (ERGA) gelungen, hochwertige Referenzgenome für 98…

Zirkulär wirtschaften für eine verantwortliche Regionalentwicklung

IAT begleitet Fab.Region Bergisches Städtedreieck. Kann zirkuläre Wirtschaft helfen, unser Wirtschaftssystem umweltverträglicher und sozial gerechter zu machen? Die „Fabrication City“ – kurz „Fab City“ ¬– kann (fast) alles, was sie…

Partner & Förderer