Planck findet ein fast perfektes Universum

Babybild des Weltalls: Die Unregelmäßigkeiten der kosmischen Mikrowellenhintergrundstrahlung (CMB), wie sie mit Planck beobachtet wurden. Der CMB ist eine Momentaufnahme vom ältesten Licht im Universum, das ausgesandt wurde, als das All erst 380000 Jahre alt war. Das Bild zeigt winzige Temperaturschwankungen in Regionen mit leicht unterschiedlicher Dichte, aus denen alle Strukturen hervorgegangen sind: die Sterne und Galaxien von heute. © ESA und Planck Collaboration <br>

Die erste vollständige Himmelskarte der Mikrowellenhintergrundstrahlung bestätigt das Standardmodell der Kosmologie eindrucksvoll und legt dessen Parameter nun sehr genau fest. Gleichzeitig finden die Wissenschaftler der Planck-Kollaboration aber auch signifikante Anomalien. Diese deuten möglicherweise darauf hin, dass einige Aspekte des Standardmodells noch nicht verstanden sind. Wissenschaftliche Artikel zu den neuen Ergebnissen erscheinen am 22. März 2013.

Die Daten für die nun veröffentlichte Himmelskarte wurden während der ersten fünfzehneinhalb Monate der Planck-Mission gewonnen. Das Weltraumteleskop der europäischen Raumfahrtagentur ESA zeigt das älteste Licht im Universum. Dieses ging auf die Reise, als das All erst 380000 Jahre alt war und nach dem Urknall zum ersten Mal durchsichtig wurde.

Damals kühlte die heiße Ursuppe aus Protonen, Elektronen und Photonen langsam ab. Neutrale Wasserstoffatome bildeten sich. Das Licht hatte freie Bahn und erlaubt es uns heute, ein Bild des Babyuniversums zu machen. Als sich der Kosmos weiter ausdehnte und abkühlte, wurde diese Strahlung zu längeren Wellenlängen hin verschoben, sodass wir sie heute als kosmischen Mikrowellenhintergrund (CMB von englisch Cosmic Microwave Background) bei einer Temperatur von etwa 2,7 Kelvin, entsprechend minus 270 Grad Celsius, empfangen.

Winzige Temperaturschwankungen in dieser CMB-Karte spiegeln kleinste Dichtefluktuationen im frühen Universum wider. „Die Planck-Karte des CMB liefert uns ein extrem detailliertes Bild des ganz frühen Universums“, sagt Simon White, Co-Investigator in der Planck-Kollaboration und Direktor am Garchinger Max-Planck-Institut für Astrophysik.

White untersucht, wie sich kosmische Strukturen entwickeln und war maßgeblich daran beteiligt, das Standardmodell der Kosmologie in den 1980er-Jahren zu etablieren. „Alle Strukturen, die wir heute sehen, entstanden aus winzigen Dichtefluktuationen kurz nach dem Urknall“, so Simon White. Der Planck-Satellit wurde gebaut, um diese Fluktuationen über den gesamten Himmel mit bisher unerreichter Auflösung und Empfindlichkeit zu vermessen – mit dem Ziel, Zusammensetzung und Entwicklung des Universums vom Beginn bis heute zu bestimmen.

„Die Daten von Planck passen extrem gut zum Standardmodell der Kosmologie“, bestätigt Torsten Enßlin, der die am Max-Planck-Institut für Astrophysik angesiedelte deutsche Beteiligung an der Mission leitet. „Die kosmologischen Parameter konnten mit Planck jetzt so genau bestimmt werden wie nie zuvor. Und unsere Analyse bestand mit Bravour alle Tests gegenüber diversen anderen astronomischen Beobachtungen.“

So zeigen die Planckdaten, dass die normale Materie, aus der Galaxien, Sterne und auch unsere Erde bestehen, nur mit rund 4,9 Prozent zur Massen- und Energiedichte des Universums beiträgt. Dazu kommen etwa 26,8 Prozent Dunkle Materie, die sich lediglich über ihre Schwerkraftwirkung bemerkbar macht; deutlich mehr, als bisher für diesen mysteriösen Stoff angenommen. Andererseits ist der Anteil der Dunklen Energie – der rätselhaften Komponente, die dafür sorgt, dass sich das Universum beschleunigt ausdehnt – mit 68,3 Prozent geringer als gedacht.
Auch die Geschwindigkeit, mit der unser Universum heute expandiert, die sogenannte Hubble-Konstante, hat Planck neu bestimmt: mit 67,15 km/s/Mpc ist ihr Wert signifikant kleiner als der derzeitige Standardwert (etwa 72 km/s/Mpc). Daraus ergibt sich dann auch ein etwas höheres Weltalter von 13,82 Milliarden Jahren (bisher: 13,7 Milliarden Jahre).

Allerdings gibt es aufgrund der extrem hohen Qualität der Planckdaten auch einige Ungereimtheiten, die sich nur schwer mit dem Standardmodell in Einklang bringen lassen. So sind die CMB-Fluktuationen auf großen Skalen geringer, als man das von den auf kleineren Skalen gemessenen Strukturen erwarten würde. Außerdem scheint eine Himmelsphäre etwas stärkere Strukturen aufzuweisen als die andere. Dazu passt vielleicht ein weiteres auffälliges Element: ein kalter Fleck, der sich über eine viel größere Region erstreckt, als man annehmen dürfte.

Diese Daten könnten somit eine Erweiterung des Standardmodells oder sogar eine neue Theorie nötig machen. „Auch wenn wir diese Anomalien heute noch nicht verstehen, so können wir doch ausschließen, dass es sich um einen Vordergrundeffekt handelt“, sagt Torsten Enßlin. „Insbesondere der cold spot ist schon länger bekannt; hierbei könnte es sich aber auch um eine statistische Fluktuation handeln.“

Die Wissenschaftler am Max-Planck-Institut für Astrophysik sind bereits seit Beginn der Mission an der Software-Entwicklung für die Datenreduktion beteiligt, um die Vordergrundstrahlung von Objekten wie Galaxienhaufen, Quasaren und auch unserer eigenen Milchstraße zu entfernen. Inzwischen konzentriert sich die Arbeit aber darauf, die Informationen aus der kosmischen Mikrowellenhintergrundstrahlung zu analysieren und dadurch unser Universum besser zu verstehen.

Ein Aspekt, der dabei unter anderem untersucht wurde, ist die Entdeckung und Vermessung von Galaxienhaufen durch den Sunyaev-Zeld'ovich-Effekt. Dieser SZ-Effekt ist eine charakteristische Signatur von Galaxienhaufen im kosmischen Mikrowellenhintergrund. Sie entsteht, wenn das Licht des CMB auf seinem Weg zu uns einen Galaxienhaufen passiert. Durch die verschiedenen Frequenzbänder von Planck lässt sich der SZ-Effekt sehr gut darstellen.

Rashid Sunyaev, heute Direktor am Max-Planck-Institut für Astrophysik und Co-Investigator in der Planck-Kollaboration, sagte gemeinsam mit Yakov Zel'dovich nicht nur den Effekt der Galaxienhaufen auf den CMB vorher, sondern auch die akustischen Fluktuationen im CMB selbst, die Planck jetzt so detailliert vermessen hat.

Die Planck-Ergebnisse sind für Sunyaev sehr aufregend: „Als wir vor mehr als 40 Jahren unsere Modelle für den CMB entwickelt haben, war das für uns eher ein rein theoretisches Gedankenexperiment. Wir hätten uns nie träumen lassen, dass die Messungen tatsächlich irgendwann so genau werden, dass sie nun sogar zur Entdeckung von Hunderten bisher unbekannter Galaxienhaufen eingesetzt werden können. Ein großartiger Erfolg für Planck.“

Die Planck-Wissenschaftler nutzen diese Galaxienhaufen sogar dazu, um die wichtigsten Parameter des Universums zu bestimmen – ein Methode, die so zum ersten Mal auf Daten des CMB angewendet wurde. Das Verfahren ist vollkommen unabhängig von der Bestimmung der kosmologischen Parameter anhand der Form und der Höhe der akustischen Fluktuationen.

Ansprechpartner

Dr. Torsten Enßlin,
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2243
E-Mail: ensslin@­mpa-garching.mpg.de
Dr. Hannelore Hämmerle,
Pressesprecherin
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-3980
E-Mail: pr@­mpa-garching.mpg.de

Media Contact

Dr. Torsten Enßlin Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kunststoffe – alles Müll?

»Open Lab« im Fraunhofer LBF gibt Einblicke in die Kunststoffforschung. Als erste Stadt in Deutschland erhielt Darmstadt vor 25 Jahren den Ehrentitel »Wissenschaftsstadt«. Auch das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit…

Zukunft der Ampel wird weiter erforscht

Das Forschungsprojekt „KI4LSA“, welches die Frage beantworten sollte, ob die Steuerung von Ampelanlagen mit künstlicher Intelligenz (KI) den Verkehrsfluss verbessern kann, bringt Fraunhofer im August 2022 zum Abschluss. Über 30…

Schmerzlinderung ohne Nebenwirkungen und Abhängigkeit

Forschende der FAU nutzen Adrenalin-Rezeptoren für hochwirksame Analgetika. Neuartige Substanzen, die Adrenalin- statt Opioid-Rezeptoren aktivieren, haben eine ähnliche schmerzlindernde Wirkung wie Opiate, jedoch keine negativen Folgen wie Atemdepression und Abhängigkeit….

Partner & Förderer