Neues Verfahren zur Unterdrückung von Frequenzverschiebungen in optischen Atomuhren

Einzelionenfalle der PTB zur Untersuchung der kohärenten Magnetfeldrotation
(Foto: PTB)

In der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters beschreiben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) eine neue Methode zur Unterdrückung bestimmter richtungsabhängiger Frequenzverschiebungen. Das Verfahren aus der PTB ist auf andere Hochpräzisionsexperimente übertragbar.

Optische Atomuhren sollen die ungestörte Frequenz eines atomaren Übergangs realisieren. Konsequente Weiterentwicklungen solcher Atomuhren machen sie zu den genauesten Messinstrumenten, die heutzutage zur Verfügung stehen. Ein Forschungsschwerpunkt bildet dabei die Entwicklung von Verfahren zur genauen Kontrolle oder Eliminierung von Frequenzverschiebungen durch äußere Störeinflüsse.

In der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters beschreiben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) eine neue Methode zur Unterdrückung bestimmter richtungsabhängiger Frequenzverschiebungen. Das Verfahren basiert auf der Rotation eines Magnetfeldes während der Spektroskopie und wurde erfolgreich an einer 171Yb+-Einzelionenuhr demonstriert. Dabei wurde der Frequenzfehler durch eine bewusst erzeugte Störung auf unter 0,5 % reduziert.

Die fortschreitende Entwicklung optischer Atomuhren ermöglicht immer genauere Aussagen über fundamentale physikalische Fragestellungen, zum Beispiel nach der Beschaffenheit dunkler Materie. Dazu ist es zunächst notwendig, die atomaren Übergänge, die Atomuhren als Frequenzreferenz nutzen, bestmöglich gegenüber äußeren Störeinflüssen abzuschirmen. Die aus verbleibenden Störungen resultierenden Frequenzverschiebungen müssen mit geeigneten Verfahren unterdrückt oder exakt gemessen werden, damit sie die Genauigkeit der Uhr nicht limitieren.

Für eine bestimmte Art von Störung mit richtungsabhängigem Charakter, wie die sogenannte Quadrupolverschiebung durch elektrische Feldgradienten, wird eine vollständige Unterdrückung erzielt, indem über drei Messungen gemittelt wird, bei denen das Atom entlang dreier zueinander senkrecht stehender Richtungen orientiert ist. Die innere Symmetrie der atomaren Zustände sorgt dafür, dass das Ergebnis der Mittelung von der äußeren Störung unbeeinflusst ist.

Die Orientierung des Atoms entspricht der Richtung eines von außen angelegten Magnetfeldes. PTB-Forscher haben nun ein neues Verfahren vorgestellt, das die Unterdrückung solcher Frequenzverschiebungen innerhalb einer einzelnen Messung ermöglicht, sodass also keine Mittelung mehr nötig ist.

Für die spektroskopische Präzisionsmessung in Atomuhren werden die Atome mit zwei Lichtpulsen angeregt, die von einer Dunkelzeit getrennt sind. Der während dieser Dunkelzeit akkumulierte Phasenunterschied zwischen dem Atom und der Laserquelle der Lichtpulse stellt die spektroskopische Information dar. Störeinflüsse, die während der Dunkelzeit auf das Atom einwirken, führen zu einer Änderung der Frequenz und damit zu einem anderen Phasenunterschied.

Für die Unterdrückung von richtungsabhängigen Frequenzverschiebungen wird nun in der Dunkelzeit das von außen angelegte Magnetfeld langsam und kontinuierlich um eine feste Achse gedreht, sodass sich über die gesamte Dunkelzeit gesehen ein Mittelwert von Null für die Frequenzverschiebung einstellt.

Da diese Drehung die Phasenbeziehung zwischen Atom und Laser nicht zerstört, spricht man von einem kohärenten Verfahren. Neben der Unterdrückung innerhalb einer einzigen Messung besteht ein großer Vorteil der Methode darin, dass die Orientierung des Atoms während der Lichtpulse beliebig gewählt werden kann.

Ähnliche Verfahren sind bereits aus der Kernspinresonanz -Spektroskopie (NMR-Spektroskopie) bekannt, bei denen die zu untersuchende Probe mit einem festen, „magischen“ Winkel gegenüber einem äußeren Magnetfeld gedreht wird (magic-angle spinning).

Die neue Methode wurde erfolgreich an einer 171Yb+-Einzelionenuhr an der PTB getestet. Ein starker elektrischer Feldgradient wurde künstlich erzeugt und die hervorgerufene Frequenzverschiebung mithilfe der Magnetfeldrotation um mehr als zwei Größenordnungen unterdrückt. Damit können Störungen dieser Art, die zum Beispiel durch Ladungen auf Isolatoren im Inneren der Vakuumapparatur auftreten, so weit unterdrückt werden, dass sie beim Betrieb der Atomuhr vernachlässigbar sind. Die einfache Umsetzung des Verfahrens nur mithilfe eines dynamischen Magnetfeldes ermöglicht eine direkte Übertragung auf weitere Hochpräzisions-Experimente.
(es/ptb)

Wissenschaftliche Ansprechpartner:

Dr. Nils Huntemann, Leiter der Arbeitsgruppe 4.43 „Optische Uhren mit gespeicherten Ionen“, Telefon: (0531)592-4430, E-Mail: nils.huntemann@ptb.de

Originalpublikation:

R. Lange, N. Huntemann, C. Sanner, H. Shao, B. Lipphardt, Chr. Tamm, E. Peik: Coherent Suppression of Tensor Frequency Shifts through Magnetic Field Rotation. Phys. Rev. Lett. 125, 143201 (2020)

Weitere Informationen:

https://www.ptb.de/cms/presseaktuelles/journalisten/nachrichten-presseinformatio… Die Presseinfo im PTB-Web
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.143201 Die wissenschaftliche Veröffentlichung

Media Contact

Dipl.-Journ. Erika Schow Presse- und Öffentlichkeitsarbeit
Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartige Beschichtung gegen Eis

Das Material verzögert die Bildung von Eiskristallen und verringert die Adhäsion von Eisschichten. Dank einer innovativen Fertigungsmethode ist die Beschichtung sehr robust und haftet auf zahlreichen Oberflächen. Eisabweisende Beschichtungen gibt…

Bioabbaubare Materialien – In Bier verpackt

Empa-Forschende haben aus einem Abfallprodukt der Bierbrauerei Nanocellulose gewonnen und diese zu einem Aerogel verarbeitet. Der hochwertige Werkstoff könnte in Lebensmittelverpackungen zum Einsatz kommen. Am Anfang war die Maische. Das…

RISEnergy: Innovationen für die Klimaneutralität beschleunigen

Die EU strebt bis 2050 Klimaneutralität an. Das Projekt RISEnergy (steht für: Research Infrastructure Services for Renewable Energy) soll auf dem Weg dorthin die Entwicklung von Innovationen für erneuerbare Energien…

Partner & Förderer