Neuer Hall-Effekt entdeckt

Abgelenkte Elektronen aufgrund eines unkonventionellen anomalen Hall-Effekts in einem altermagnetischen Kristall von Rutheniumdioxid
Abb./©: Libor Šmejkal und Matthias Greber

Elektronen lassen sich verlustfrei übertragen – auch bei den kürzlich entdeckten unkonventionellen Magneten, die kein magnetisches Moment haben.

Vor mehreren Jahren machten Forschende der Johannes Gutenberg-Universität Mainz (JGU) und der Akademie der Wissenschaften der Tschechischen Republik eine theoretische Vorhersage über die Entdeckung eines neues Hall-Effekts. Nun konnten sie diese Vorhersage experimentell untermauern, gemeinsam mit Forschungspartnern der Beihang University in China, der Huazhong University of Science and Technology in China, der Universidad del Norte in Kolumbien und der University of Nottingham in Großbritannien. Die Ergebnisse hat das Forschungsteam im Fachmagazin Nature Electronics veröffentlicht.

Der Hall-Effekt

Ende des 19. Jahrhunderts entdeckte der US-amerikanische Physiker Edwin Hall zwei Effekte. Der erste ist der nach ihm benannte, konventionelle Hall-Effekt. Dieser besagt: Hält man ein Material in ein Magnetfeld und schickt einen elektrischen Strom hindurch, werden die Elektronen durch die Lorenzkraft abgelenkt. Das wurde in der letzten Dekade intensiv genutzt, um N- und P-Typ-Halbleiter zu unterscheiden. Zwei Jahre nach dieser ersten Entdeckung fand Hall zudem heraus: Nimmt man ein magnetisches Material wie Eisen, fällt der Effekt überraschend stark aus – auch ohne Magnetfeld. Da das Material magnetisch ist, tritt anstelle des externen magnetischen Feldes eine Magnetisierung auf, so die Erklärung. Vor zwanzig Jahren fand man zudem heraus, dass ein großer Beitrag in vielen Materialien von einem effektiven Feld stammt, das auf die Elektronen wirkt – es kommt durch ein quantenmechanisches Zusammenspiel der magnetischen Ordnung und der Spin-Orbit-Interaktion zustande. Man spricht dabei vom anormalen Hall-Effekt. Lange Zeit ging man davon aus, dass dieser Effekt von der Magnetisierung abhängt. Ohne Magnetisierung, so dachte man, könne dieser Effekt nicht auftreten. Dies änderte sich einige Jahre später, als man entdeckte, dass eine nichtlineare Textur in einem Magneten ebenfalls einen anormalen Hall-Effekt hervorruft.

Was sehr theoretisch klingt, hat durchaus eine interessante Anwendung. Denn während Elektronen, die sich durch einen herkömmlichen Leiter bewegen, das Atomgitter aufheizen und somit Energie verlieren könnten, bewegen sie sich in einem Material, in dem der Hall-Effekt auftritt, verlustfrei. Zumindest in transversaler Richtung, also in einer Querbewegung. Um ihr volles Potenzial auszuschöpfen, sind jedoch praktischere magnetische Materialien ohne Magnetisierung und komplexe Nichtkollinearität erforderlich.

Anormaler Hall-Effekt in Materialien ohne magnetisches Moment

Forschende der JGU sagten vor einigen Jahren voraus, dass der anormale Hall-Effekt in unkonventionellen Materialien wie Rutheniumoxid auch ohne magnetisches Moment auftritt – sprich in Materialien, in denen sich die Magnetisierung aufgrund antiparalleler linearer Spin-Ordnungen vollkommen aufhebt. „Das war sehr überraschend, schließlich ging man bis dahin davon aus, dass auch der Hall-Effekt durch diese gegensätzlichen Momente kompensiert wird“, erläutert Dr. Libor Šmejkal, wissenschaftlicher Teamleiter im Institut für Physik der JGU. „Doch sind die räumlichen Verteilungen der magnetischen Momente in diesem speziellen Material wie Rutheniumoxid nicht sphärisch, sondern hantelförmig. Daher können sie einen anormalen Hall-Effekt hervorrufen, der überraschenderweise sehr stark ist.“

Experimenteller Nachweis gelungen

Kürzlich ist es dem Forscherteam gelungen, diese Vorhersage experimentell zu verifizieren. „Unsere Forschungspartner konnten etwa zehn Nanometer dünne Schichten aus Rutheniumoxid herstellen – mit zwei verschiedenen Kristallgitter-Orientierungen. Eine Orientierung sollte laut den theoretischen Vorhersagen keinen Hall-Effekt, die andere einen großen anormalen Hall-Effekt zeigen“, sagt Šmejkal. Genau dies konnte im Experiment bestätigt werden. Während sich bei der einen Orientierung nur der lineare Hall-Effekt zeigte, der durch die Lorenzkraft hervorgerufen wird, trat im anderem der unkonventionelle Hall-Effekt auf. „Äußerst interessant ist das aus zwei Gründen: Zum einen ist dies das erste lineare System, in dem sich Elektronen auch ohne eine Magnetisierung verlustfrei übertragen lassen. Stattdessen handelt es sich um einen einfachen Magneten mit zwei Subgitterstrukturen – eine Eigenheit, die viele Materialien aufweisen. Zweitens bestätigen diese Daten unsere Theorie des Altermagnetismus“, sagt Šmejkal. Diese Theorie haben die Forschenden im Journal Physical Review X letztes Jahr vorgestellt.

Bildmaterial:
https://download.uni-mainz.de/presse/08_physik_komet_inspire_hall_effekt.jpg
Abgelenkte Elektronen aufgrund eines unkonventionellen anomalen Hall-Effekts in einem altermagnetischen Kristall von Rutheniumdioxid
Abb./©: Libor Šmejkal und Matthias Greber

Veröffentlichungen:
Zexin Feng, Xiaorong Zhou, Libor Šmejkal et al.
An anomalous Hall effect in altermagnetic ruthenium dioxide
Nature Electronics, 7. November 2022
DOI: 10.1038/s41928-022-00866-z
https://www.nature.com/articles/s41928-022-00866-z

Libor Šmejkal, Jairo Sinova, and Tomas Jungwirth
Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry
Physical Review X, 23. September 2022
DOI: 10.1103/PhysRevX.12.031042
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.12.031042

Libor Šmejkal et al.
Anomalous Hall antiferromagnets
Nature Reviews Materials, 30. März 2022
DOI: 10.1038/s41578-022-00430-3
https://www.nature.com/articles/s41578-022-00430-3

Libor Šmejkal, Rafael González-Hernández, Tomas Jungwirth and Jairo Sinova
Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnet
Science Advances, 5. Juni 2020
DOI: 10.1126/sciadv.aaz8809
https://advances.sciencemag.org/content/6/23/eaaz8809

Weiterführende Links:
https://www.sinova-group.physik.uni-mainz.de/ – Interdisciplinary Spintronics Research Group (INSPIRE)
https://www.spice.uni-mainz.de/ – Spin Phenomena Interdisciplinary Center (SPICE)

Lesen Sie mehr:
https://presse.uni-mainz.de/antiferromagneten-sind-entgegen-der-lehrmeinung-fuer… – Pressemitteilung „Antiferromagneten sind entgegen der Lehrmeinung für dissipationslose Nanoelektronik geeignet“ (23.10.2020)

Wissenschaftliche Ansprechpartner:

Dr. Libor Šmejkal
Interdisciplinary Spintronics Research Group (INSPIRE)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23644
E-Mail: lsmejkal@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/team/libor-smejkal/

https://www.uni-mainz.de/

Media Contact

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer