Neuen Quantenstrukturen auf der Spur

The electrons absorb laser light and set up “momentum combs” (the hills) spanning the energy valleys within the material (the red line).
Markus Borsch, University of Michigan

Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien. Wissenschaftlern aus Regensburg, Marburg und Ann Arbor (USA) ist es nun gelungen mit ultrakurzen Lichtblitzen die genaue elektronische Struktur dieser Quantenmaterialien mit einzigartiger Präzision blitzschnell zu bestimmen. Die Ergebnisse der Arbeit sind jetzt in der Fachzeitschrift „Science“ veröffentlicht worden.

Die Entwicklung neuer Technologien – von ultrakompakter Elektronik über hocheffiziente Solarzellen bis hin zu Quanten-Computern – ist eng mit der Entdeckung neuer Materialien verknüpft. Dabei sind in den letzten Jahren insbesondere zweidimensionale Kristalle ins Blickfeld der Forschung gerückt.

Von diesen Schichtmaterialien lassen sich einzelne Atomlagen abziehen und – wie in einem mikroskopischen Lego-Baukasten – zu neuen künstlichen Strukturen stapeln, deren ungewöhnliche Quanteneigenschaften maßgeschneidert werden können. Um Materialienkombinationen mit Anwendungspotenzial herstellen zu können, werden allerdings tiefgreifende Kenntnisse ihrer elektronischen Eigenschaften benötigt.

Die entscheidende Rolle spielt dabei die sogenannte Bandstruktur der Elektronen, welche die Energie eines Elektrons mit seinem Impuls in Beziehung setzt. Die Bandstruktur kann wie die DNA der Elektronen im Festkörper verstanden werden. So lässt sich beispielsweise aus deren genauem Verlauf schließen, ob ein neues Designermaterial elektrisch leitend ist oder nicht und ob es für Solarzellen verwendet werden kann.

Die derzeit gängigen Analysemethoden zur Bestimmung der elektronischen Struktur lassen sich meist nur schwer auf diese atomar dünnen Schichten anwenden. Zum einen sind deren laterale Dimensionen meist zu klein, zum anderen erfordert die genaue Untersuchung oft äußerst komplexe experimentelle Aufbauten, was die Untersuchung dieser neuartigen Systeme zusätzlich erschwert.

Eine Kooperation der Arbeitsgruppe von Prof. Dr. Rupert Huber am Institut für Experimentelle und Angewandte Physik der Universität Regensburg mit den Gruppen von Prof. Dr. Stephan W. Koch von der Universität Marburg und Prof. Dr. Mackillo Kira von der University of Michigan, USA, entwickelte nun eine Methode, mit der die elektronische Struktur atomar dünner Materialien einfach und sprichwörtlich blitzschnell bestimmt werden kann.

Die Idee des Experiments, das in Regensburg durchgeführt wurde, ist Elektronen, die zunächst unbeweglich im Festkörper gebunden sind, mit Hilfe eines kurzen Lichtblitzes in das sogenannte Leitungsband anzuregen, wo sie sich frei bewegen können. Ein zweiter, intensiver Lichtblitz beschleunigt sie dann über weite Bereiche dieses Leitungsbandes. Dabei folgt die Bewegung der Elektronen, wie bei der Abfahrt eines Skifahrers auf einer Buckelpiste, der Form des Leitungsbandes. Dies führt dazu, dass ein schwacher Lichtblitz erzeugt wird, der den Forschern Aufschluss über die Bewegung der Elektronen im Kristall und damit der zugrundeliegenden Bandstruktur liefert.

Die Wissenschaftler machen sich dabei die Welleneigenschaften von Elektronen zu Nutze, wodurch stehende Elektronen-Wellen im Kristall ausgebildet werden können. Diese stehenden Wellen besitzen wie ein Kamm, Zinken und Lücken. Die Lokalisierung der Elektronen in den Zinken des Kamms ermöglicht eine Bestimmung der elektronischen Struktur mit einzigartiger Präzision.

Dem Team um Prof. Kira und Prof. Koch ist es nun erstmals gelungen, diese spektralen Fingerabdrücke direkt mit der elektronischen Struktur des Materials in Verbindung zu bringen. „Diese neuartige Methode eröffnet uns die Möglichkeit die Bandstruktur neuer Quantenmaterialien selbst in Umgebungsluft zu untersuchen und viel zielgerichteter denn je nach neuartigen Quanteneffekten in maßgeschneiderten Materialien zu suchen“ erklärt Christoph Schmid von der Universität Regensburg, einer der beiden Erstautoren der Publikation, begeistert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rupert Huber
Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: +49 (0)941 943-2070
E-Mail: rupert.huber@ur.de

Prof. Dr. Stephan W. Koch
Arbeitsgruppe Theoretische Halbleiterphysik
Philipps-Universität Marburg
Tel.: +49 (0)6421 28-21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Prof. Dr. Mackillo Kira
Electrical Engineering and Computer Science
University of Michigan
E-Mail: mackkira@umich.edu

Originalpublikation:

M. Borsch, C. P. Schmid, L. Weigl, S. Schlauderer, N. Hofmann, C. Lange, J. T. Steiner, S. W. Koch, R. Huber, M. Kira, „Super-resolution lightwave tomography of electronic bands in quantum materials“, Science (2020).
DOI: 10.1126/science.abe2112
URL: https://science.sciencemag.org/cgi/doi/10.1126/science.abe2112

Media Contact

Katrin Groß Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Älteste Karbonate im Sonnensystem

Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde. Ein 2019 in Norddeutschland niedergegangener Meteorit enthält Karbonate, die zu den ältesten im Sonnensystem überhaupt zählen und zugleich einen Nachweis der…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen