Lasertechnologie: Die Turbulenz und der Kamm

Quantenkaskadenlaser mit unterschiedlichen Durchmessern Bild: Second Bay Studios/Harvard SEAS

Es handelt sich um eine ganz besondere Sorte von Licht, mit der man wichtige Messungen durchführen kann: Sogenannte Frequenzkämme spielen in der Laserforschung heute eine große Rolle.

Während das Licht eines gewöhnlichen Lasers nur eine einzige, ganz bestimmte Frequenz hat, besteht ein Frequenzkamm aus unterschiedlichen Lichtfrequenzen, die präzise in immer gleichen Abständen angeordnet sind, wie die Zähne eines Kamms.

Solches Frequenzkamm-Licht ist schwer zu erzeugen. Nun gelang es aber einem internationalen Forschungsteam aus Österreich (TU Wien), den USA (Harvard, Yale) und Italien (Mailand, Turin) diese spezielle Sorte von Licht mit Hilfe einfacher kreisrunder Quantenkaskadenlaser herzustellen – ein Phänomen, das gängigen Laser-Theorien völlig zu widersprechen schien.

Wie sich zeigte, sind ausgerechnet Turbulenzen, wie man sie auch aus der Aerodynamik oder von Wasserwellen kennt, für diese besonders geordnete Art von Licht verantwortlich. Diese Ergebnisse wurden nun im Fachjournal „Nature“ publiziert.

Besser als die Physik erlaubt?

„Eigentlich hatten wir bei unseren Experimenten etwas völlig anderes gesucht“, berichtet Benedikt Schwarz, der an der TU Wien und der Harvard University Frequenzkämme erforscht und 2019 dafür einen ERC Starting Grant erhielt.

„Wir untersuchten kreisrunde Quanten-Kaskadenlaser, das ist eine spezielle Art von Lasern, die seit Jahren in unseren Labors am Institut für Festkörperelektronik hergestellt werden. Wir wollten untersuchen, wie sich bestimmte Defekte auf das Laserlicht auswirken.“

Doch die Überraschung war groß, als man feststellte: Man kann diese kreisrunden Mini-Laser auf sehr einfache Weise dazu bringen, Frequenzkämme zu erzeugen, die sich aus mehreren Lichtfrequenzen in immer gleichen Abständen zusammensetzen.

„Das ist für uns großartig, denn exakt nach dieser Art von Licht suchen wir. Nur hatten wir es genau hier nicht erwartet – der Erfolg schien der gängigen Lasertheorie zu widersprechen“, erklärt Schwarz.

Wenn das Licht eines Lasers aus unterschiedlichen Frequenzen bestehen soll, dann muss es zeitlich variabel sein – allerdings muss dabei eine wiederkehrende Ordnung entstehen. Die Schwingungen des Lichts müssen sich zeitlich immer wieder auf dieselbe Weise periodisch wiederholen. Nur dann entsteht ein Frequenzkamm.

Turbulenz, die für Schwingung sorgt

„Als wir darüber nachdachten, wie diese Schwingung entstehen könnte, suchten wir nach ähnlichen Phänomenen in anderen Wissenschaftsgebieten. Schließlich stießen wir auf die Turbulenz als treibende Kraft, die auch bei unseren Frequenzkämmen für Schwingung sorgt“, sagt Benedikt Schwarz.

Turbulenz ist ein Phänomen, das in vielen ganz unterschiedlichen Bereichen sichtbar wird: Im Rauch, der von einer erloschenen Kerze aufsteigt, sind Turbulenzen erkennbar, die zu chaotischen, unvorhersehbaren Mustern führen.

Aber auch bei anderen Arten von Wellenbewegungen stößt man auf sogenannte Welleninstabilitäten. Eine kleine Störung wird immer größer und dominiert irgendwann die Dynamik des Systems.

Der exakte mathematischen Zusammenhang zwischen solchen Turbulenzen und dem neuartigen Laserlicht ließ sich schließlich durch eine Laser-Theorie finden, die Nikola Opačak von der TU Wien erst kürzlich, im November 2019, publiziert hatte: „Wir stellten fest, dass sich diese Lasertheorie auf dieselbe Gleichung zurückführen lässt, die auch in anderen Wissenschaftsdisziplinen für Turbulenz sorgt“, sagt Schwarz.

In einem ringförmigen Laser können Wellen-Instabilitäten dazu führen, dass ein stabiler Frequenzkamm entsteht. Zusätzlich kommt es zu einer starken Verbindung zwischen unterschiedlichen Lichtfrequenzen: Unterschiedliche Frequenzen werden fest aneinander gekoppelt.

Der Kamm als künstliche Nase

Frequenzkämme spielen hauptsächlich deshalb in der Forschung eine besondere Rolle, weil man mit ihnen winzige chemische Sensoren bauen könnte. Viele Moleküle absorbieren Licht im Infrarotbereich auf ganz charakteristische Weise.

Wenn man untersucht, welche Lichtwellenlängen absorbiert werden, kann man feststellen, um welches Molekül es sich handelt. Dafür ist es aber nötig, möglichst viele verschiedene Lichtfrequenzen im Infrarotbereich zur Verfügung zu haben – und genau das liefert ein optischer Frequenzkamm auf ideale Weise.

Dr. Benedikt Schwarz
Institut für Festkörperelektronik
Technische Universität Wien
Gußhausstraße 25, 1040 Wien
T 43-1-58801-36214
benedikt.schwarz@tuwien.ac.at

M. Piccardo et al., Frequency combs induced by phase turbulence, Nature 2020,
https://www.nature.com/articles/s41586-020-2386-6

Media Contact

Dr. Florian Aigner Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

24.000 Kilometer in der Sekunde: Bislang schnellster Stern von Kölner Physikern entdeckt

Erforschung von Hochgeschwindigkeitssternen durch Teleskop in Südamerika / Kölscher „4711“-Stern braucht nur 7,6 Jahre um Schwarzes Loch zu umkreisen Dr. Florian Peißker und Professor Dr. Andreas Eckart vom I. Physikalischen…

Blick in einen G1-Tiegel während der Herstellung einer Sprühbeschichtung am Fraunhofer IISB. Kurt Fuchs / Fraunhofer IISB

Auf den Spuren schädlicher Metalle

Hohe Materialperformance mit multikristallinen Siliziumblöcken Fraunhofer IISB, AlzChem AG und Wacker Chemie AG haben das BMWi-Verbundprojekt SYNERGIE abgeschlossen. Das SYNERGIE-Konsortium untersuchte, wie metallische Verunreinigungen in multikristallinen Siliziumblöcken entstehen. Spezies, Quellen…

Neues Konzept der bakteriellen Genregulation entdeckt

Bakterien sind unsere stetigen Begleiter: Die winzigen Lebewesen sind in und auf dem menschlichen Körper zu finden, ebenso wie auf dem von Tieren und Pflanzen.